Cơ sở dữ liệu

TS. Hồ Mạnh Tài

Khoa CNTT2

Học viện Công nghệ Bưu chính Viễn thông 2018

Chương 4: Phụ thuộc hàm Functional Dependencies

1. Dạng chuẩn và phụ thuộc hàm Normal forms & functional dependencies

Dạng chuẩn 1 (1st Normal Forms – 1NF)

Student	Courses
Mary	{CS145,CS229}
Joe	{CS145,CS106}
•••	•••

Student	Courses
Mary	CS145
Mary	CS229
Joe	CS145
Joe	CS106

Violates 1NF.

In 1st NF

1NF Constraint: Types must be atomic!

Các ràng buộc ngăn ngừa bất thường dữ liệu

A poorly designed database causes *anomalies*:

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••	••	••

If every course is in only one room, contains <u>redundant</u> information!

A poorly designed database causes *anomalies*:

Student	Course	Room
Mary	CS145	B01
Joe	CS145	C12
Sam	CS145	B01
••	••	••

If we update the room number for one tuple, we get inconsistent data = an <u>update anomaly</u>

A poorly designed database causes *anomalies*:

Student	Course	Room
••	••	•

If everyone drops the class, we lose what room the class is in! = a *delete* anomaly

CS229

C12

A poorly designed database causes *anomalies*:

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••	••	••

Similarly, we can't reserve a room without students = an <u>insert</u> <u>anomaly</u>

Student	Course
Mary	CS145
Joe	CS145
Sam	CS145
••	

Course	Room
CS145	B01
CS229	C12

Is this form better?

- Redundancy?
- Update anomaly?
- Delete anomaly?
- Insert anomaly?

Today: develop theory to understand why this design may be better **and** how to find this *decomposition*...

2. Phụ thuộc hàm - FDs

Định nghĩa

Def: Let A,B be *sets* of attributes We write A \rightarrow B or say A *functionally determines* B if, for any tuples t₁ and t₂: t₁[A] = t₂[A] implies t₁[B] = t₂[B]

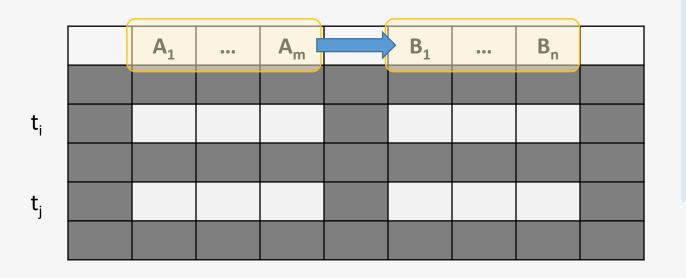
and we call A \rightarrow B a <u>functional dependency</u>

A->B means that

"whenever two tuples agree on A then they agree on B."

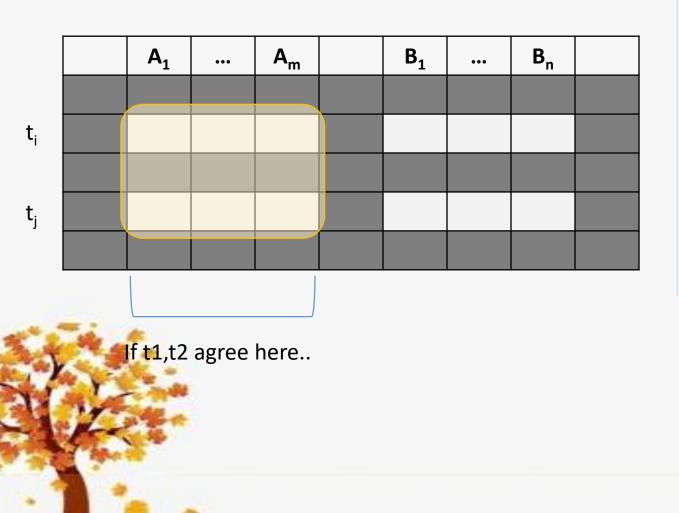
A ₁	 A _m	B ₁	 B _n	

<u>Defn (again):</u> Given attribute sets $A=\{A_1,...,A_m\}$ and $B = \{B_1,...,B_n\}$ in R,



<u>Defn (again):</u> Given attribute sets $A=\{A_1,...,A_m\}$ and $B = \{B_1,...,B_n\}$ in R,

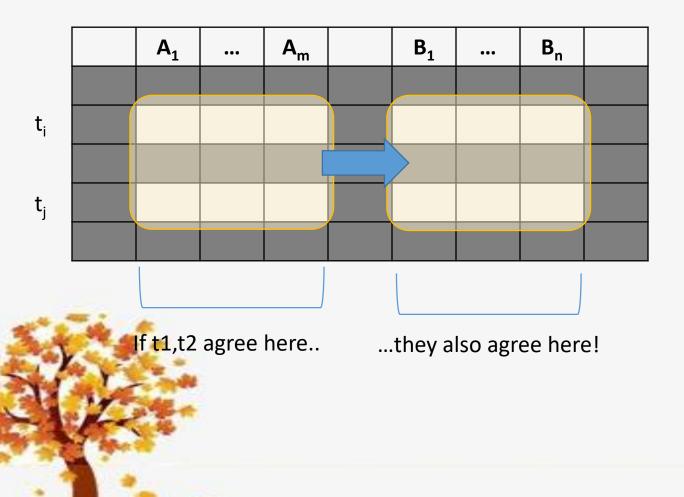
The *functional dependency* $A \rightarrow B$ on R holds if for *any* t_i, t_j in R:



<u>Defn (again):</u> Given attribute sets $A=\{A_1,...,A_m\}$ and $B = \{B_1,...,B_n\}$ in R,

The *functional dependency* $A \rightarrow B$ on R holds if for *any* t_i, t_j in R:

 $t_i[A_1] = t_j[A_1] \text{ AND } t_i[A_2] = t_j[A_2] \text{ AND } \dots$ AND $t_i[A_m] = t_i[A_m]$



<u>Defn (again):</u> Given attribute sets $A=\{A_1,...,A_m\}$ and $B = \{B_1,...,B_n\}$ in R,

The *functional dependency* $A \rightarrow B$ on R holds if for *any* t_i, t_j in R:

$$\begin{split} \underline{if} t_i[A_1] &= t_j[A_1] \text{ AND } t_i[A_2] = t_j[A_2] \text{ AND} \\ \dots \text{ AND } t_i[A_m] &= t_j[A_m] \end{split}$$

 $\underline{\text{then}} t_i[B_1] = t_j[B_1] \text{ AND } t_i[B_2] = t_j[B_2]$ AND ... AND $t_i[B_n] = t_j[B_n]$

FDs for Relational Schema Design

- High-level idea: why do we care about FDs?
 - 1. Start with some relational *schema*
 - 2. Find out its *functional dependencies (FDs)*
 - 3. Use these to design a better schema
 - 1. One which minimizes the possibility of anomalies

Functional Dependencies as Constraints

A **functional dependency** is a form of **constraint**

- Holds on some instances (but not others) – can check whether there are violations
- Part of the schema, helps define a valid instance

Recall: an *instance* of a schema is a multiset of tuples conforming to that schema, *i.e. a table*

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••		

Note: The FD {Course} -> {Room} *holds on this instance*

Functional Dependencies as Constraints

Note that:

- You can check if an FD is violated by examining a single instance;
- However, you cannot prove that an FD is part of the schema by examining a single instance.

This would require checking every valid instance

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••		••

However, cannot *prove* that the FD {Course} -> {Room} is *part of the schema*

More Examples

An FD is a constraint which <u>holds</u>, or <u>does not hold</u> on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

More Examples

EmpID	Name	Phone	Position	
E0045	Smith	1234	Clerk	
E3542	Mike	9876 ←	Salesrep	
E1111	Smith	9876 ←	Salesrep	
E9999	Mary	1234	Lawyer	

{Position} \rightarrow {Phone}

More Examples

EmpID	Name	Phone	Position
E0045	Smith	$1234 \rightarrow$	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	$1234 \rightarrow$	Lawyer

but *not* {Phone} \rightarrow {Position}

2. Tìm phụ thuộc hàm

"Good" vs. "Bad" FDs

• We can start to develop a notion of **good** vs. **bad** FDs:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Intuitively:

EmpID -> Name, Phone, Position is "good FD"

 Minimal redundancy, less possibility of anomalies

"Good" vs. "Bad" FDs

We can start to develop a notion of good vs. bad FDs:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Intuitively:

EmpID -> Name, Phone, Position is "good FD"

But Position -> Phone *is a "bad FD"*

 Redundancy! Possibility of data anomalies

"Good" vs. "Bad" FDs

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••	••	••

Returning to our original example... can you see how the "bad FD" {Course} -> {Room} could lead to an:

- Update Anomaly
- Insert Anomaly
- Delete Anomaly

Given a set of FDs (from user) our goal is to:

- 1. Find all FDs, and
- 2. Eliminate the "Bad Ones".

Lecture 5 > Section 2 > Finding FDs

FDs for Relational Schema Design

- High-level idea: why do we care about FDs?
 - 1. Start with some relational *schema*
 - 2. Find out its *functional dependencies (FDs)*
 - 3. Use these to design a better schema
 - 1. One which minimizes possibility of anomalies

This part can be tricky!

Finding Functional Dependencies

Example:

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

1. {Name} → {Color}
 2. {Category} → {Department}
 3. {Color, Category} → {Price}

Given the provided FDs, we can see that {Name, Category} → {Price} must also hold on **any instance**...

Which / how many other FDs do?!?

Finding Functional Dependencies

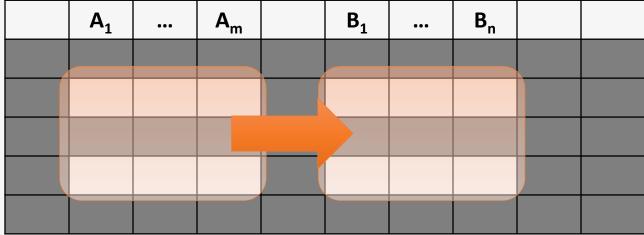
Equivalent to asking: Given a set of FDs, $F = {f_1, ..., f_n}$, does an FD g hold?

Inference problem: How do we decide?

Answer: Three simple rules called **Armstrong's Rules.**

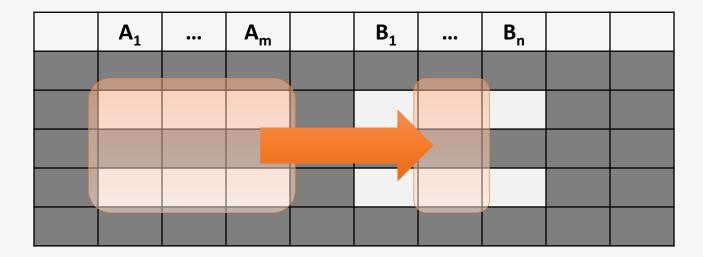
- 1. Split/Combine,
- 2. Reduction, and
- 3. Transitivity... ideas by picture

1. Split/Combine



 $A_1, ..., A_m \rightarrow B_1, ..., B_n$

1. Split/Combine

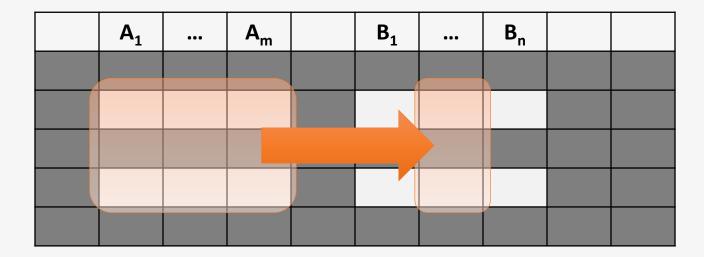


$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

... is equivalent to the following *n* FDs...

 $A_1, \dots, A_m \rightarrow B_i$ for i=1,...,n

1. Split/Combine

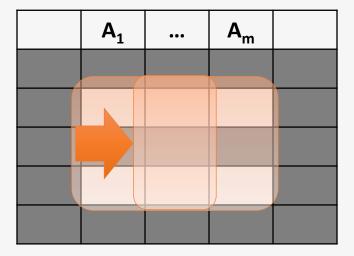


And vice-versa, $A_1, ..., A_m \rightarrow B_i$ for i=1,...,n

... is equivalent to ...

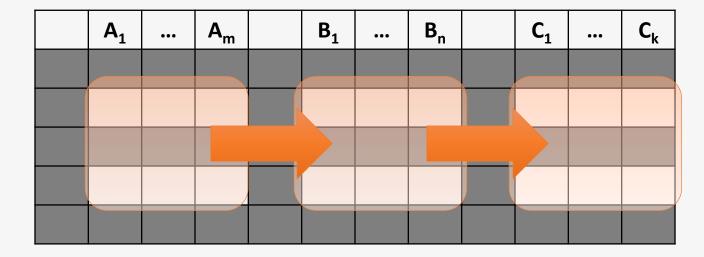
$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

2. Reduction/Trivial



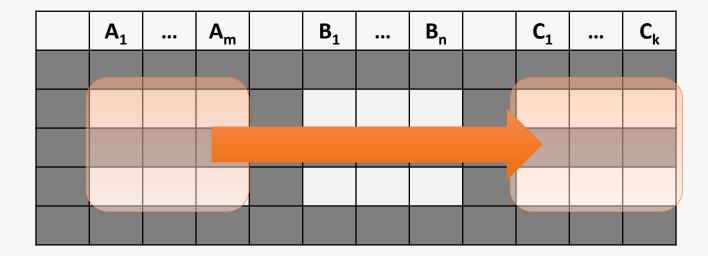
 $A_1, ..., A_m \rightarrow A_j$ for any j=1,...,m

3. Transitive Closure



 $A_1, ..., A_m \rightarrow B_1, ..., B_n$ and $B_1, ..., B_n \rightarrow C_1, ..., C_k$

3. Transitive Closure



$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$
 and
 $B_1, ..., B_n \rightarrow C_1, ..., C_k$

implies $A_1, \dots, A_m \rightarrow C_1, \dots, C_k$

Finding Functional Dependencies

Example:

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

1. {Name} → {Color}
 2. {Category} → {Department}
 3. {Color, Category} → {Price}

Which / how many other FDs hold?

Finding Functional Dependencies

Example:

Inferred FDs:

Inferred FD	Rule used
4. {Name, Category} -> {Name}	?
5. {Name, Category} -> {Color}	?
<pre>6. {Name, Category} -> {Category}</pre>	?
7. {Name, Category -> {Color, Category}	?
8. {Name, Category} -> {Price}	?

Provided FDs:

1. {Name} → {Color}
 2. {Category} → {Dept.}
 3. {Color, Category} →
 {Price}

Which / how many other FDs hold?

Finding Functional Dependencies

Example:

Inferred FDs:

Inferred FD	Rule used
4. {Name, Category} -> {Name}	Trivial
5. {Name, Category} -> {Color}	Transitive (4 -> 1)
6. {Name, Category} -> {Category}	Trivial
7. {Name, Category -> {Color, Category}	Split/combine (5 + 6
8. {Name, Category} -> {Price}	Transitive (7 -> 3)

Provided FDs:

1. {Name} → {Color}
 2. {Category} → {Dept.}
 3. {Color, Category} →
 {Price}

Can we find an algorithmic way to do this?

Bao đóng - Closures

Closure of a set of Attributes

Given a set of attributes $A_1, ..., A_n$ and a set of FDs F: Then the <u>closure</u>, $\{A_1, ..., A_n\}^+$ is the set of attributes B s.t. $\{A_1, ..., A_n\} \rightarrow B$

<u>Example:</u>		$ \{name\} \rightarrow \{color\} \\ \{category\} \rightarrow \{department\} \\ \{color, category\} \rightarrow \{price\} $
-----------------	--	--

Example Closures: {name}+ = {name, color}
{name, category}+ =
{name, category, color, dept, price}
{color}+ = {color}

Start with $X = \{A_1, ..., A_n\}$ and set of FDs F.

Repeat until X doesn't change; **do**:

if $\{B_1, ..., B_n\} \rightarrow C$ is entailed by F and $\{B_1, ..., B_n\} \subseteq X$

then add C to X.

Return X as X⁺

Start with $X = \{A_1, ..., A_n\}$, FDs F. **Repeat until** X doesn't change; **do**: **if** $\{B_1, ..., B_n\} \rightarrow C$ is in F **and** $\{B_1, ..., B_n\} \subseteq X$: **then** add C to X. **Return** X as X⁺

F =

 $\{name\} \rightarrow \{color\}$

 $\{category\} \rightarrow \{dept\}$

```
\{\text{color, category}\} \rightarrow \{\text{price}\}
```

 $\{name, category\}^+ =$ {name, category}

Start with X = $\{A_1, ..., A_n\}$, FDs F. **Repeat until** X doesn't change; **do**: **if** $\{B_1, ..., B_n\} \rightarrow C$ is in F **and** $\{B_1, ..., B_n\} \subseteq X$: **then** add C to X. **Return** X as X⁺

F = $\{name\} \rightarrow \{color\}$ $\{category\} \rightarrow \{dept\}$ $\{color, category\} \rightarrow \{price\}$



Start with X = {A₁, ..., A_n}, FDs F. **Repeat until** X doesn't change; **do**: **if** {B₁, ..., B_n} \rightarrow C is in F **and** {B₁, ..., B_n} \subseteq X: **then** add C to X. **Return** X as X⁺

 $\{\text{name}\} \rightarrow \{\text{color}\}$

F =

 $\{category\} \rightarrow \{dept\}$

{name, category}* =
{name, category, color, dept}

Start with X = {A₁, ..., A_n}, FDs F. **Repeat until** X doesn't change; **do**: **if** {B₁, ..., B_n} \rightarrow C is in F **and** {B₁, ..., B_n} \subseteq X: **then** add C to X. **Return** X as X⁺

 $\{\text{name}\} \rightarrow \{\text{color}\}$

F =

 $\{category\} \rightarrow \{dept\}$

 $\{\text{color, category}\} \rightarrow \{\text{price}\}$

{name, category}* =
{name, category, color, dept}

{name, category}* =
{name, category, color, dept, price}

Example

$$\{A,B\} \rightarrow \{C\} \\ \{A,D\} \rightarrow \{E\} \\ \{B\} \rightarrow \{D\} \\ \{A,F\} \rightarrow \{B\}$$

Compute {A, F}⁺ = {A, F,

Example

$$\{A,B\} \rightarrow \{C\} \\ \{A,D\} \rightarrow \{E\} \\ \{B\} \rightarrow \{D\} \\ \{A,F\} \rightarrow \{B\}$$

Compute {A, F}⁺ = {A, F, B

Example

$$\{A,B\} \rightarrow \{C\} \\ \{A,D\} \rightarrow \{E\} \\ \{B\} \rightarrow \{D\} \\ \{A,F\} \rightarrow \{B\}$$

Compute
$$\{A,B\}^+ = \{A, B, C, D, E\}$$

Compute $\{A, F\}^+ = \{A, B, C, D, E, F\}$

3. Closures, Superkeys & Keys

Why Do We Need the Closure?

- With closure we can find all FD's easily
- To check if $X \rightarrow A$
 - 1. Compute X⁺
 - 2. Check if $A \in X^+$

Note here that **X** is a *set* of attributes, but **A** is a *single* attribute. Why does considering FDs of this form suffice?

Recall the <u>Split/combine</u> rule: $X \rightarrow A_1, ..., X \rightarrow A_n$ *implies* $X \rightarrow \{A_1, ..., A_n\}$

Step 1: Compute X⁺, for every set of attributes X:

 ${A}^+ = {A}$ $\{B\}^+ = \{B, D\}$ $\{C\}^+ = \{C\}$ $\{D\}^+ = \{D\}$ ${A,B}^+ = {A,B,C,D}$ $\{A,C\}^+ = \{A,C\}$ ${A,D}^+ = {A,B,C,D}$ $\{A,B,C\}^+ = \{A,B,D\}^+ = \{A,C,D\}^+ = \{A,B,C,D\}$ $\{B,C,D\}^+ = \{B,C,D\}$ ${A,B,C,D}^+ = {A,B,C,D}$

No need to compute all of these- why?

 $\{A,B\} \rightarrow C$

 $\{A,D\} \rightarrow B$

{B}

 $\rightarrow D$

Example:

Given F =

Step 1: Compute X⁺, for every set of attributes X:

 $\{A\}^{+} = \{A\}, \{B\}^{+} = \{B,D\}, \{C\}^{+} = \{C\}, \{D\}^{+} = \{D\}, \{A,B\}^{+} = \{A,B,C,D\}, \{A,C\}^{+} = \{A,C\}, \{A,D\}^{+} = \{A,B,C,D\}, \{A,B,C\}^{+} = \{A,B,C\}^{+} = \{A,B,C,D\}^{+} = \{A,C,D\}^{+} = \{A,B,C,D\}^{+} = \{B,C,D\}, \{A,B,C,D\}^{+} = \{A,B,C,D\}$

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \emptyset :

 $\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$

Example:

Given F =

 $\{A,B\} \rightarrow C$

 $\{A,D\} \rightarrow B$

 $\{B\} \rightarrow D$

Step 1: Compute X⁺, for every set of attributes X:

 $\{A\}^{+} = \{A\}, \{B\}^{+} = \{B,D\}, \{C\}^{+} = \{C\}, \{D\}^{+} = \{D\}, \{A,B\}^{+} = \{A,B,C,D\}, \{A,C\}^{+} = \{A,C\}, \{A,D\}^{+} = \{A,B,C,D\}, \{A,B,C\}^{+} = \{A,B,C\}^{+} = \{A,B,C,D\}^{+} = \{A,C,D\}^{+} = \{A,B,C,D\}^{+} = \{B,C,D\}, \{A,B,C,D\}^{+} = \{A,B,C,D\}$

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \emptyset :

"Y is in the closure of X"

 $\{A,B\} \rightarrow C$

 $\{A,D\} \rightarrow B$

 $\{B\} \rightarrow D$

Example:

Given F =

 $\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$

Step 1: Compute X⁺, for every set of attributes X:

 $\{A\}^{+} = \{A\}, \{B\}^{+} = \{B,D\}, \{C\}^{+} = \{C\}, \{D\}^{+} = \{D\}, \{A,B\}^{+} = \{A,B,C,D\}, \{A,C\}^{+} = \{A,C\}, \{A,D\}^{+} = \{A,B,C,D\}, \{A,B,C\}^{+} = \{A,B,C\}^{+} = \{A,B,C,D\}^{+} = \{A,C,D\}^{+} = \{A,B,C,D\}^{+} = \{B,C,D\}, \{A,B,C,D\}^{+} = \{A,B,C,D\}$

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \varnothing :

The FD X \rightarrow Y is non-trivial

 $\{A,B\} \rightarrow C$

 $\{A,D\} \rightarrow B$

 $\{B\} \rightarrow D$

Example:

Given F =

 $\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$

Superkeys and Keys

Keys and Superkeys

A <u>superkey</u> is a set of attributes $A_1, ..., A_n$ s.t. for *any other* attribute **B** in R, we have $\{A_1, ..., A_n\} \rightarrow B$ I.e. all attributes are *functionally determined* by a superkey

A <u>key</u> is a *minimal* superkey

This means that no subset of a key is also a superkey (i.e., dropping any attribute from the key makes it no longer a superkey)

Finding Keys and Superkeys

- For each set of attributes X
 - 1. Compute X⁺

2. If X⁺ = set of all attributes then X is a **superkey**

3. If X is minimal, then it is a key

Example of Finding Keys

Product(name, price, category, color)

{name, category} \rightarrow price {category} \rightarrow color

What is a key?

Example of Keys

Product(name, price, category, color)

{name, category} → price {category} → color

{name, category}+ = {name, price, category, color} = the set of all attributes ⇒ this is a superkey ⇒ this is a key, since neither name nor category alone is a superkey