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APPENDIX 1
DOCUMENTATION FOR THE
OR COURSEWARE

You will find a wealth of software resources on the CD-
ROM packaged in the back of the book. The entire software
package is called OR Courseware.

The installation instructions and system requirements
are specified on the front of the CD-ROM. Although the CD-
ROM is designed for use on a Windows-based IBM-com-
patible PC, much of the software also can be run on a Mac-
intosh (as specified later for the individual cases).

To get started, and to see an overview of the available
software resources, refer to the introductory screens on the
CD-ROM. The individual software packages also are dis-
cussed briefly below.

OR TUTOR

OR Tutor is a Web document consisting of a set of HTML
pages that often contain JavaScript. Any browser that sup-
ports JavaScript can be used, including Netscape Naviga-
tor 4.0 (or higher) or Internet Explorer 4.5 (or higher). It
can be viewed with either an IBM-compatible PC or a
Macintosh.

This resource has been designed to be your personal tu-
tor by illustrating and illuminating key concepts in an in-
teractive manner. It contains 16 demonstration examples that
supplement the examples in the book in ways that cannot be
duplicated on the printed page. Each one vividly demon-
strates one of the algorithms or concepts of OR in action.
Most combine an algebraic description of each step with a
geometric display of what is happening. Some of these geo-
metric displays become quite dynamic, with moving points
or moving lines, to demonstrate the evolution of the algo-
rithm. The demonstration examples also are integrated with

the book, using the same notation and terminology, with ref-
erences to material in the book, etc. Students find them an
enjoyable and effective learning aid.

INTERACTIVE ROUTINES

Another key tutorial feature of the OR Courseware is a set
of interactive routines implemented in Excel spreadsheets
and/or Visual Basic. These routines can be viewed with re-
cent versions of Microsoft Excel such as Excel 97, 98 (for
Macintosh), or 2000. Each one is a self-contained routine
that uses prompts or help files to provide the necessary in-
formation for execution. Either Excel spreadsheets or
graphic interfaces are supplied to allow easy entry of prob-
lem data.

Each of these routines enables you to interactively ex-
ecute one of the algorithms of OR. While viewing all rele-
vant information on the computer screen, you make the de-
cision on how the next step of the algorithm should be
performed, and then the computer does all the necessary
number crunching to execute that step. When a previous mis-
take is discovered, the routine allows you to quickly back-
track to correct the mistake. To get you started properly, the
computer points out any mistake made on the first iteration
(where possible). When done, you can print out all the work
performed to turn in for homework.

In our judgment, these interactive routines provide the
“right” way in this computer age for students to do home-
work designed to help them learn the algorithms of OR. The
routines enable you to focus on concepts rather than mind-
less number crunching, thereby making the learning process
far more efficient and effective as well as stimulating. They



with Excel 98 for Macintosh). Premium Solver offers four
times the capacity (800 decision variables) of the standard
Solver for linear programming problems, and twice the ca-
pacity (400 decision variables) for nonlinear programming
problems, plus solution speeds 3 to 10 times faster than the
standard Solver. A product of the same organization that de-
veloped the standard Solver in Excel (Frontline Systems Inc.),
Premium Solver is fully upward compatible with the standard
Solver. The organization’s website is www.frontsys.com.
Technical support currently is provided at (775) 831-0300 or
by e-mail at ‹info@frontsys.com›.

The other three Excel add-ins are academic versions of
SensIt (introduced in Sec. 15.2), TreePlan (introduced in
Sec. 15.4), and RiskSim (introduced in Sec. 22.6). All are
shareware developed by Professor Michael R. Middleton for
Excel 5, 95, 97, 98, and 2000 for Windows and Macintosh.
Documentation is included on the CD-ROM for all three
add-ins. The accompanying website is www.usfca.edu/fac-
staff/middleton. This software is shareware, so those desir-
ing to use it after the course should register and pay the
shareware fee.

As with any Excel add-in, each of these add-ins needs
to be installed in Excel before it is operational. (The same
is true for the standard Excel Solver.) Installation instruc-
tions are included in the OR Courseware for each one.

Another Excel add-in discussed extensively in Sec. 22.6
is @RISK for simulation, from Palisade Corporation. Al-
though Palisade declined to make this add-in available on
our CD-ROM, it can be downloaded from the website,
www.palisade.com, for a 10-day trial period.

MPL/CPLEX

As discussed at length in Secs. 3.7 and 4.8, MPL is a state-
of-the-art modeling language and its prime solver CPLEX
is a particularly prominent and powerful solver. The student
version of MPL and CPLEX is included in the OR Course-
ware. Although this student version is limited to much
smaller problems than the massive linear, integer, and qua-
dratic programming problems commonly solved in practice
by the full version, it still can handle up to 300 functional
constraints and 300 decision variables (including any inte-
ger variables). The system requirements for the student ver-
sion are an IBM-compatible PC with a 486 or Pentium
processor, 16 Mb of memory, 4 Mb of free hard-disk space,
and Microsoft Windows 95/98, NT (3.51 or higher), or 2000.

also point you in the right direction, including organizing
the work to be done. However, the routines do not do the
thinking for you. As in any good homework assignment, you
are allowed to make mistakes (and to learn from those mis-
takes), so that hard thinking will need to be done to try to
stay on the right path. We have been careful in designing
the division of labor between the computer and the student
to provide an efficient, complete learning process.

SPECIAL AUTOMATIC ROUTINES

Once you have learned the logic of a particular algorithm
with the help of an interactive routine, you will want to be
able to apply the algorithm quickly with an automatic rou-
tine thereafter. Such a routine is provided by one or more
of the software packages discussed below for most of the
algorithms described in this book. However, for a few al-
gorithms that are not included in these commercial pack-
ages, we have provided special automatic routines in the OR
Courseware. Like the interactive routines, these automatic
routines are implemented in Excel spreadsheets and/or Vi-
sual Basic for viewing with a recent version of Excel.

EXCEL FILES

The OR Courseware includes a separate Excel file for nearly
every chapter in this book. Each file typically includes sev-
eral spreadsheets that will help you formulate and solve the
various kinds of models described in the chapter. Two types
of spreadsheets are included. First, each time an example is
presented that can be solved using Excel, the complete
spreadsheet formulation and solution is given in that chap-
ter’s Excel file. This provides a convenient reference, or even
useful templates, when you set up spreadsheets to solve sim-
ilar problems with the Excel Solver (or the Premium Solver
discussed in the next subsection). Second, for many of the
models in the book, template files are provided that already
include all the equations necessary to solve the model. You
simply enter the data for the model and the solution is im-
mediately calculated.

EXCEL ADD-INS

Four Excel add-ins are included in OR Courseware. One is
Premium Solver for Education (Version 3.5), which is a more
powerful version of the standard Solver in Excel. It works
with Excel 5, 95, 97, and 2000 on Windows systems (but not
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ter to which they can be applied. The solutions often are dis-
played in a What’s Best spreadsheet. The CD-ROM also pro-
vides LINGO and LINDO tutorials.

MICROSOFT PROJECT

Chapter 10 (especially Sec. 10.2) describes how Microsoft
Project can be used to help construct and evaluate a project
network while using PERT/CPM. The version included in
the OR Courseware is Microsoft Project 98, which is de-
signed for use on a Windows platform. (Microsoft also mar-
kets an earlier version, Project 4, for Macintosh). The CD-
ROM includes a document READTH~1.HTM in the Project
folder with various links that provide extensive documenta-
tion of the software. The OR Courseware also includes an
MS Project folder that has the main kinds of worksheets that
Microsoft Project would generate for the prototype example
of Chapter 10.

UPDATES

The software world evolves very rapidly during the lifetime
of one edition of a textbook. We believe that the documen-
tation provided in this appendix is accurate at the time of
this writing, but changes inevitably will occur as time passes.

With each new printing of this edition, we plan to pro-
vide updated versions of the software in the OR Course-
ware whenever feasible. You can also visit the book’s web-
site, www.mhhe.com/hillier, for information about software
updates.

The CD-ROM provides an extensive MPL tutorial and
documentation, as well as MPL/CPLEX formulations and so-
lutions for virtually every example in the book to which they
can be applied. Also included in the OR Courseware is the
student version of OptiMax 2000, which enables fully inte-
grating MPL models into Excel and solving with CPLEX. In
addition, the powerful nonlinear programming solver
CONOPT is included in MPL for solving such problems.

The website for further exploring MPL and its solvers,
or for downloading updated student versions of MPL/CPLEX
is, www.maximal-usa.com.

LINGO/LINDO FILES

This book also features the popular modeling language
LINGO (see especially Appendix 3.1 and the end of Sec.
3.7) and the companion solver LINDO (see Sec. 4.8 and Ap-
pendix 4.1). Although they were not available for inclusion
in the OR Courseware, student versions of both LINGO and
LINDO (as well as the companion spreadsheet solver What’s
Best) can be downloaded from the website, www.lindo.com.
Designed for use on a Windows platform, each of these
downloads currently can handle up to 150 functional con-
straints and 300 decision variables. In the case of integer
programming or nonlinear programming, they are restricted
to 30 integer variables or 30 nonlinear variables. (Extended
versions of this software can solve vastly larger problems.)

The OR Courseware includes extensive LINGO/LINDO
files or (when LINDO is not relevant) LINGO files for many
of the chapters. Each file provides the LINGO and LINDO
models and solutions for the various examples in the chap-
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APPENDIX 2
CONVEXITY

As introduced in Chap. 13, the concept of convexity is fre-
quently used in OR work, especially in the area of nonlin-
ear programming. Therefore, we further introduce the prop-
erties of convex or concave functions and convex sets here.

CONVEX OR CONCAVE FUNCTIONS 
OF A SINGLE VARIABLE

We begin with definitions.

Definitions: A function of a single variable f(x) is
a convex function if, for each pair of values of x,
say, x� and x� (x� � x�),

f [�x� � (1 � �)x�] � �f(x�) � (1 � �) f(x�)

for all values of � such that 0 � � � 1. It is a
strictly convex function if � can be replaced by
�. It is a concave function (or a strictly concave
function) if this statement holds when � is re-
placed by 	 (or by 
).

This definition of a convex function has an enlighten-
ing geometric interpretation. Consider the graph of the func-
tion f(x) drawn as a function of x, as illustrated in Fig. A2.1
for a function f(x) that decreases for x � 1, is constant for
1 � x � 2, and increases for x 
 2. Then [x�, f(x�)] and [x�,
f(x�)] are two points on the graph of f(x), and [�x� � (1 �
�)x�, �f(x�) � (1 � �) f(x�)] represents the various points on
the line segment between these two points (but excluding
these endpoints) when 0 � � � 1. Thus, the � inequality in
the definition indicates that this line segment lies entirely
above or on the graph of the function, as in Fig. A2.1. There-
fore, f(x) is convex if, for each pair of points on the graph

of f(x), the line segment joining these two points lies en-
tirely above or on the graph of f(x).

For example, the particular choice of x� and x� shown
in Fig. A2.1 results in the entire line segment (except the
two endpoints) lying above the graph of f (x). This also oc-
curs for other choices of x� and x� where either x� � 1 or
x� 
 2 (or both). If 1 � x� � x� � 2, then the entire line
segment lies on the graph of f (x). Therefore, this f (x) is 
convex.

This geometric interpretation indicates that f(x) is con-
vex if it only “bends upward” whenever it bends at all. (This
condition is sometimes referred to as concave upward, as
opposed to concave downward for a concave function.) To
be more precise, if f(x) possesses a second derivative every-
where, then f(x) is convex if and only if d2f(x)/dx2 	 0 for
all possible values of x.

The definitions of a strictly convex function, a concave
function, and a strictly concave function also have analogous
geometric interpretations. These interpretations are summa-
rized below in terms of the second derivative of the function,
which provides a convenient test of the status of the function.

Convexity test for a function of a single variable:
Consider any function of a single variable f(x) that
possesses a second derivative at all possible values
of x. Then f(x) is

1. Convex if and only if �
d

d

2f
x
(
2
x)

� 	 0 for all possi-

ble values of x

2. Strictly convex if and only if �
d

d

2f
x
(
2
x)

� 
 0 for all

possible values of x



havior at x � 1.) Applying the definition of a concave func-
tion, we see that if 0 � x� � 1 and x� 
 1 (as shown in Fig.
A2.3), then the entire line segment joining [x�, f(x�)] and [x�,
f(x�)] lies below the graph of f(x), except for the two end-
points of the line segment. If either 0 � x� � x� � 1 or 1 �
x� � x�, then the entire line segment lies on the graph of f(x).
Therefore, f(x) is concave (but not strictly concave).

The function in Fig. A2.4 is strictly concave because its
second derivative always is less than zero.

As illustrated in Fig. A2.5, any linear function has its
second derivative equal to zero everywhere and so is both
convex and concave.

The function in Fig. A2.6 is neither convex nor concave
because as x increases, the slope fluctuates between de-

3. Concave if and only if �
d

d

2f
x
(
2
x)

� � 0 for all pos-

sible values of x

4. Strictly concave if and only if �
d

d

2f
x
(
2
x)

� � 0 for all

possible values of x

Note that a strictly convex function also is convex, but a con-
vex function is not strictly convex if the second derivative
equals zero for some values of x. Similarly, a strictly con-
cave function is concave, but the reverse need not be true.

Figures A2.1 to A2.6 show examples that illustrate these
definitions and this convexity test.

Applying this test to the function in Fig. A2.1, we see
that as x is increased, the slope (first derivative) either in-
creases (for 0 � x � 1 and x 
 2) or remains constant (for
1 � x1 � 2). Therefore, the second derivative always is non-
negative, which verifies that the function is convex. How-
ever, it is not strictly convex because the second derivative
equals zero for 1 � x � 2.

However, the function in Fig. A2.2 is strictly convex be-
cause its slope always is increasing so its second derivative
always is greater than zero.

The piecewise linear function shown in Fig. A2.3
changes its slope at x � 1. Consequently, it does not possess
a first or second derivative at this point, so the convexity test
cannot be fully applied. (The fact that the second derivative
equals zero for 0 � x � 1 and x 
 1 makes the function el-
igible to be either convex or concave, depending upon its be-
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FIGURE A2.1
A convex function.

FIGURE A2.2
A strictly convex function.



m-dimensional (Euclidean) space. By letting m � n � 1, the
points on the graph of f(x1, x2, . . . , xn) become the possi-
ble values of [x1, x2, . . . , xn, f(x1, x2, . . . , xn)]. Another
point, (x1, x2, . . . , xn, xn�1), is said to lie above, on, or be-
low the graph of f(x1, x2, . . . , xn), according to whether
xn�1 is larger, equal to, or smaller than f(x1, x2, . . . , xn),
respectively.

Definition: The line segment joining any two
points (x�1, x�2, . . . , x�m) and (x�1, x�2, . . . , x�m) is the
collection of points

(x1, x2, . . . , xm) � [�x1� � (1 � �)x�1, �x2�
� (1 � �)x�2, . . . , �x�m � (1 � �)x�m]

such that 0 � � � 1.

creasing and increasing so the second derivative fluctuates
between being negative and positive.

CONVEX OR CONCAVE FUNCTIONS 
OF SEVERAL VARIABLES

The concept of a convex or concave function of a single vari-
able also generalizes to functions of more than one variable.
Thus, if f(x) is replaced by f(x1, x2, . . . , xn), the definition
still applies if x is replaced everywhere by (x1, x2, . . . , xn).
Similarly, the corresponding geometric interpretation is still
valid after generalization of the concepts of points and line
segments. Thus, just as a particular value of (x, y) is inter-
preted as a point in two-dimensional space, each possible
value of (x1, x2, . . . , xm) may be thought of as a point in
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FIGURE A2.3
A concave function.

FIGURE A2.4
A strictly concave function.

FIGURE A2.5
A function that is both convex and
concave.

FIGURE A2.6
A function that is neither convex
nor concave.



convex if and only if its n 
 n Hessian matrix is positive
semidefinite for all possible values of (x1, x2, . . . , xn).

To illustrate the convexity test for two variables, con-
sider the function

f(x1, x2) � (x1 � x2)2 � x2
1 � 2x1x2 � x2

2.

Therefore,

(1) �
�2f(

�
x
x
1
2
1

, x2)
� �

�2f(
�
x
x
1
2
2

, x2)
� � ���

2

�
f
x
(x

1

1

�
,
x
x
2

2)
��

2

�

2(2) � (�2)2 � 0,

(2) � 2 
 0,

(3) �
�2f(

�
x
x
1
2
2

, x2)
� � 2 
 0.

Since 	 0 holds for all three conditions, f(x1, x2) is convex.
However, it is not strictly convex because the first condition
only gives � 0 rather than 
 0.

Now consider the negative of this function

g(x1, x2) � �f(x1, x2) � �(x1 � x2)2

� �x2
1 � 2x1x2 � x2

2.

In this case,

(4) �
�2g(

�
x
x
1
2
1

, x2)
� �

�2g(
�
x
x
1
2
2

, x2)
� � ���

2

�
g
x
(x
1�

1,
x2

x2)
��

2

�

�2(�2) � 22 � 0,

(5) �
�2g(

�
x
x
1
2
1

, x2)
� � �2 � 0,

(6) �
�2g(

�
x
x
1
2
2

, x2)
� � �2 � 0.

�2f(x1, x2)
��

�x2
1

Thus, a line segment in m-dimensional space is a direct
generalization of a line segment in two-dimensional space.
For example, if

(x�1, x�2) � (2, 6), (x1�, x2�) � (3, 4),

then the line segment joining them is the collection of points

(x1, x2) � [3� � 2(1 � �), 4� � 6(1 � �)],

where 0 � � � 1.

Definition: f(x1, x2, . . . , xn) is a convex function
if, for each pair of points on the graph of f(x1,
x2, . . . , xn), the line segment joining these two
points lies entirely above or on the graph of f(x1,
x2, . . . , xn). It is a strictly convex function if this
line segment actually lies entirely above this graph
except at the endpoints of the line segment. Con-
cave functions and strictly concave functions are
defined in exactly the same way, except that above
is replaced by below.

Just as the second derivative can be used (when it ex-
ists everywhere) to check whether a function of a single vari-
able is convex, so second partial derivatives can be used to
check functions of several variables, although in a more
complicated way. For example, if there are two variables and
all partial derivatives exist everywhere, then the convexity
test assesses whether all three quantities in the first column
of Table A2.1 satisfy the inequalities shown in the appro-
priate column for all possible values of (x1, x2).

When there are more than two variables, the convexity
test is a generalization of the one shown in Table A2.1. For
example, in mathematical terminology, f(x1, x2, . . . , xn) is
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TABLE A2.1 Convexity test for a function of two variables

Strictly Strictly
Quantity Convex Convex Concave Concave

�
�2f(

�
x
x
1
2
1

, x2)
� �

�2f(
�
x
x
1
2
2

, x2)
� � ���

2

�
f
x
(x

1

1

�
,
x2

x2)
��

2
	 0 
 0 	 0 
 0

�
�2f (

�
x
x
1
2
1

, x2)
� 	 0 
 0 � 0 � 0

�
�2f(

�
x
x
1
2
2

, x2)
� 	 0 
 0 � 0 � 0

Values of (x1, x2) All possible values



g(x1, x2) � �x4
1 � 3x2

1 � 5x1 � 2x1x2 � x2
2,

is a concave function.

CONVEX SETS

The concept of a convex function leads quite naturally to
the related concept of a convex set. Thus, if f(x1, x2, . . . ,
xn) is a convex function, then the collection of points that
lie above or on the graph of f(x1, x2, . . . , xn) forms a con-
vex set. Similarly, the collection of points that lie below or
on the graph of a concave function is a convex set. These
cases are illustrated in Figs. A2.7 and A2.8 for the case of
a single independent variable. Furthermore, convex sets have
the important property that, for any given group of convex
sets, the collection of points that lie in all of them (i.e., the
intersection of these convex sets) is also a convex set. There-
fore, the collection of points that lie both above or on a con-
vex function and below or on a concave function is a con-
vex set, as illustrated in Fig. A2.9. Thus, convex sets may
be viewed intuitively as a collection of points whose bottom
boundary is a convex function and whose top boundary is a
concave function.

Although describing convex sets in terms of convex and
concave functions may be helpful for developing intuition
about their nature, their actual definition has nothing to do
(directly) with such functions.

Definition: A convex set is a collection of points
such that, for each pair of points in the collection,
the entire line segment joining these two points is
also in the collection.

Because 	 0 holds for the first condition and � 0 holds for
the other two, g(x1, x2) is a concave function. However, it is
not strictly concave since the first condition gives � 0.

Thus far, convexity has been treated as a general prop-
erty of a function. However, many nonconvex functions do
satisfy the conditions for convexity over certain intervals for
the respective variables. Therefore, it is meaningful to talk
about a function being convex over a certain region. For ex-
ample, a function is said to be convex within a neighbor-
hood of a specified point if its second derivative or partial
derivatives satisfy the conditions for convexity at that point.
This concept is useful in Appendix 3.

Finally, two particularly important properties of convex
or concave functions should be mentioned. First, if f(x1,
x2, . . . , xn) is a convex function, then g(x1, x2, . . . , xn) �
�f(x1, x2, . . . , xn) is a concave function, and vice versa, as
illustrated by the above example where f(x1, x2) � (x1 �
x2)2. Second, the sum of convex functions is a convex func-
tion, and the sum of concave functions is a concave func-
tion. To illustrate,

f1(x1) � x4
1 � 2x2

1 � 5x1

and

f2(x1, x2) � x2
1 � 2x1x2 � x2

2

are both convex functions, as you can verify by calculating
their second derivatives. Therefore, the sum of these functions

f(x1, x2) � x4
1 � 3x2

1 � 5x1 � 2x1x2 � x2
2

is a convex function, whereas its negative
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FIGURE A2.7
Example of a convex set
determined by a convex function.

FIGURE A2.8
Example of a convex set
determined by a concave function.

FIGURE A2.9
Example of a convex set
determined by both convex
and concave functions.



Definition: An extreme point of a convex set is a
point in the set that does not lie on any line seg-
ment that joins two other points in the set.

Thus, the extreme points of the convex set in Fig. A2.11
are (0, 0), (0, 2), (1, 2), (2, 1), (1, 0), and all the infinite
number of points on the boundary between (2, 1) and (1, 0).
If this particular boundary were a line segment instead, then
the set would have only the five listed extreme points.

The distinction between nonconvex sets and convex sets
is illustrated in Figs. A2.10 and A2.11. Thus, the set of points
shown in Fig. A2.10 is not a convex set because there exist
many pairs of these points, for example, (1, 2) and (2, 1),
such that the line segment between them does not lie en-
tirely within the set. This is not the case for the set in Fig.
A2.11, which is convex.

In conclusion, we introduce the useful concept of an ex-
treme point of a convex set.

1164 APPENDIXES

x1

x2

1

2

1 20 x1

x2

1

2

1 20

FIGURE A2.10
Example of a set that is not convex.

FIGURE A2.11
Example of a convex set.
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APPENDIX 3
CLASSICAL OPTIMIZATION
METHODS

This appendix reviews the classical methods of calculus for
finding a solution that maximizes or minimizes (1) a func-
tion of a single variable, (2) a function of several variables,
and (3) a function of several variables subject to equality
constraints on the values of these variables. It is assumed
that the functions considered possess continuous first and
second derivatives and partial derivatives everywhere. Some
of the concepts discussed next have been introduced briefly
in Secs. 13.2 and 13.3.

UNCONSTRAINED OPTIMIZATION OF A
FUNCTION OF A SINGLE VARIABLE

Consider a function of a single variable, such as that shown
in Fig. A3.1. A necessary condition for a particular solution
x � x* to be either a minimum or a maximum is that

�
df

d
(
x
x)
� � 0 at x � x*.

Thus, in Fig. A3.1 there are five solutions satisfying these
conditions. To obtain more information about these five crit-
ical points, it is necessary to examine the second derivative.
Thus, if

�
d

d

2f
x
(
2
x)

� � 0 at x � x*,

then x* must be at least a local minimum [that is, f(x*) �
f(x) for all x sufficiently close to x*]. Using the language in-

troduced in Appendix 2, we can say that x* must be a local
minimum if f(x) is strictly convex within a neighborhood of
x*. Similarly, a sufficient condition for x* to be a local max-
imum (given that it satisfies the necessary condition) is that
f(x) be strictly concave within a neighborhood of x* (that
is, the second derivative is negative at x*). If the second de-
rivative is zero, the issue is not resolved (the point may even
be an inflection point), and it is necessary to examine higher
derivatives.

To find a global minimum [i.e., a solution x* such that
f(x*) � f(x) for all x], it is necessary to compare the local
minima and identify the one that yields the smallest value
of f(x). If this value is less than f(x) as x � �� and as 
x � �� (or at the endpoints of the function, if it is defined
only over a finite interval), then this point is a global mini-
mum. Such a point is shown in Fig. A3.1, along with the
global maximum, which is identified in an analogous way.

However, if f(x) is known to be either a convex or a
concave function (see Appendix 2 for a description of such
functions), the analysis becomes much simpler. In particu-
lar, if f(x) is a convex function, such as the one shown in
Fig. A2.1, then any solution x* such that

�
df

d
(
x
x)
� � 0 at x � x*

is known automatically to be a global minimum. In other
words, this condition is not only a necessary but also a suf-
ficient condition for a global minimum of a convex func-



global minimum and maximum would be found by compar-
ing the local minima and maxima and then checking the
value of the function as some of the variables approach ��
or ��. However, if the function is known to be convex or
concave, then a critical point must be a global minimum or
a global maximum, respectively.

CONSTRAINED OPTIMIZATION WITH
EQUALITY CONSTRAINTS

Now consider the problem of finding the minimum or max-
imum of the function f(x), subject to the restriction that x
must satisfy all the equations

g1(x) � b1

g2(x) � b2

�

gm(x) � bm,

where m � n. For example, if n � 2 and m � 1, the prob-
lem might be

Maximize f(x1, x2) � x2
1 � 2x2,

subject to

g(x1, x2) � x2
1 � x2

2 � 1.

In this case, (x1, x2) is restricted to be on the circle of ra-
dius 1, whose center is at the origin, so that the goal is to
find the point on this circle that yields the largest value of
f(x1, x2). This example will be solved after a general ap-
proach to the problem is outlined.

tion. This solution need not be unique, since there could be
a tie for the global minimum over a single interval where
the derivative is zero. On the other hand, if f(x) actually is
strictly convex, then this solution must be the only global
minimum. (However, if the function is either always de-
creasing or always increasing, so the derivative is nonzero
for all values of x, then there will be no global minimum at
a finite value of x.)

Similarly, if f(x) is a concave function, then having

�
df

d
(
x
x)
� � 0 at x � x*

becomes both a necessary and sufficient condition for x* to
be a global maximum.

UNCONSTRAINED OPTIMIZATION OF A
FUNCTION OF SEVERAL VARIABLES

The analysis for an unconstrained function of several vari-
ables f(x), where x � (x1, x2, . . . , xn), is similar. Thus, a
necessary condition for a solution x � x* to be either a min-
imum or a maximum is that

�
	
	
f(
x
x
j

)
� � 0 at x � x*, for j � 1, 2, . . . , n.

After the critical points that satisfy this condition are iden-
tified, each such point is then classified as a local minimum
or maximum if the function is strictly convex or strictly con-
cave, respectively, within a neighborhood of the point. (Ad-
ditional analysis is required if the function is neither.) The
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so that

�
	
	
x
h
1

� � 2x1 � 2
x1 � 0,

�
	
	
x
h
2

� � 2 � 2
x2 � 0,

�
	
	


h
� � �(x2

1 � x2
2 � 1) � 0.

The first equation implies that either 
 � 1 or x1 � 0. If 

 � 1, then the other two equations imply that x2 � 1 and
x1 � 0. If x1 � 0, then the third equation implies that 
x2 � �1. Therefore, the two critical points for the original
problem are (x1, x2) � (0, 1) and (0, �1). Thus, it is appar-
ent that these points are the global maximum and minimum,
respectively.

THE DERIVATIVE OF A DEFINITE INTEGRAL

In presenting the classical optimization methods just de-
scribed, we have assumed that you are already familiar with
derivatives and how to obtain them. However, there is a spe-
cial case of importance in OR work that warrants additional
explanation, namely, the derivative of a definite integral. In
particular, consider how to find the derivative of the function

F(y) � �h(y)

g(y)
f(x, y) dx,

where g(y) and h(y) are the limits of integration expressed
as functions of y.

To begin, suppose that these limits of integration are
constants, so that g(y) � a and h(y) � b, respectively. For
this special case, it can be shown that, given the regularity
conditions assumed at the beginning of this appendix, the
derivative is

�
d
d
y
� �b

a
f(x, y) dx � �b

a
�
	f(

	
x
y
, y)
� dx.

For example, if f(x, y) � e�xy, a � 0, and b � �, then

�
d
d
y
� ��

0
e�xy dx � ��

0
(�x)e�xy dx � ��

y
1
2�

at any positive value of y. Thus, the intuitive procedure of
interchanging the order of differentiation and integration is
valid for this case.

A classical method of dealing with this problem is the
method of Lagrange multipliers. This procedure begins by
formulating the Lagrangian function

h(x, �) � f(x) � �
m

i�1

i[gi(x) � bi],

where the new variables � � (
1, 
2, . . . , 
m) are called
Lagrange multipliers. Notice the key fact that for the feasi-
ble values of x,

gi(x) � bi � 0, for all i,

so h(x, �) � f(x). Therefore, it can be shown that if (x, �) �
(x*, �*) is a local or global minimum or maximum for the
unconstrained function h(x, �), then x* is a corresponding
critical point for the original problem. As a result, the
method now reduces to analyzing h(x, �) by the procedure
just described for unconstrained optimization. Thus, the 
n � m partial derivatives would be set equal to zero

�
	
	
x
h
j

� � �
	
	
x
f
j

� � �
m

i�1

i �

	
	
g
xj

i� � 0, for j � 1, 2, . . . , n,

�
	
	


h

i
� � �gi(x) � bi � 0, for i � 1, 2, . . . , m,

and then the critical points would be obtained by solving
these equations for (x, �). Notice that the last m equations
are equivalent to the constraints in the original problem, so
only feasible solutions are considered. After further analy-
sis to identify the global minimum or maximum of h( � ), the
resulting value of x is then the desired solution to the orig-
inal problem.

From a practical computational viewpoint, the method
of Lagrange multipliers is not a particularly powerful pro-
cedure. It is often essentially impossible to solve the equa-
tions to obtain the critical points. Furthermore, even when
the points can be obtained, the number of critical points may
be so large (often infinite) that it is impractical to attempt
to identify a global minimum or maximum. However, for
certain types of small problems, this method can sometimes
be used successfully.

To illustrate, consider the example introduced earlier. In
this case,

h(x1, x2) � x2
1 � 2x2 � 
(x2

1 � x2
2 � 1),
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f(g(y), y). To illustrate, if f(x, y) � x2y3, g(y) � y, and 
h(y) � 2y, then

�
d
d
y
� �2y

y
x2y3 dx � �2y

y
3x2y2 dx � (2y)2y3(2) � y2y3(1)

� 14y5

at any positive value of y.

However, finding the derivative becomes a little more
complicated than this when the limits of integration are func-
tions. In particular,

�
d
d
y
� �h(y)

g(y)
f(x, y) dx � �h(y)

g(y)
�
	f(

	
x
y
, y)
� dx �

f(h(y), y) �
dh

d
(
y
y)
� � f(g(y), y) �

dg
d
(
y
y)
�,

where f(h(y), y) is obtained by writing out f(x, y) and then
replacing x by h(y) wherever it appears, and similarly for
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APPENDIX 4
MATRICES AND MATRIX
OPERATIONS

A matrix is a rectangular array of numbers. For example,

A �

is a 3 � 2 matrix (where 3 � 2 is said “3 by 2”) because it
is a rectangular array of numbers with three rows and two
columns. (Matrices are denoted in this book by boldface
capital letters.) The numbers in the rectangular array are
called the elements of the matrix. For example,

B � � �
is a 2 � 4 matrix whose elements are 1, 2.4, 0, �3�, �4, 2,
�1, and 15. Thus, in more general terms,

A � � aij

is an m � n matrix, where a11, . . . , amn represent the num-
bers that are the elements of this matrix; aij is shorthand
notation for identifying the matrix whose element in row i
and column j is aij for every i � 1, 2, . . . , m and j � 1,
2, . . . , n.

MATRIX OPERATIONS

Because matrices do not possess a numerical value, they
cannot be added, multiplied, and so on as if they were in-
dividual numbers. However, it is sometimes desirable to
perform certain manipulations on arrays of numbers. There-








a1n

a2n

amn

���

���

���

a12

a22

am2

a11

a21

am1








�3�
15

0

�1

2.4

2

1

�4







5

0

1

2

3

1







fore, rules have been developed for performing operations
on matrices that are analogous to arithmetic operations. To
describe these, let A � aij and B � bij be two ma-
trices having the same number of rows and the same num-
ber of columns. (We shall change this restriction on the size
of A and B later when discussing matrix multiplication.)

Matrices A and B are said to be equal (A � B) if and
only if all the corresponding elements are equal (aij � bij

for all i and j ).
The operation of multiplying a matrix by a number (de-

note this number by k) is performed by multiplying each el-
ement of the matrix by k, so that

kA � kaij.

For example,

3� � � � �.

To add two matrices A and B, simply add the correspond-
ing elements, so that

A � B � aij � bij.

To illustrate,

� � � � � � � �.

Similarly, subtraction is done as follows:

A � B � A � (�1)B,

so that

A � B � aij � bij.

3

7

7

4

0

1

2

3

3

6

5

1

6

�9

1

0

3

15

2

�3

�
1
3

�

0

1

5

������������������������



Even when both AB and BA are defined,

AB � BA

in general. Thus, matrix multiplication should be viewed as
a specially designed operation whose properties are quite
different from those of arithmetic multiplication. To under-
stand why this special definition was adopted, consider the
following system of equations:

2x1 � x2 � 5x3 � x4 � 20
x1 � 5x2 � 4x3 � 5x4 � 30

3x1 � x2 � 6x3 � 2x4 � 20.

Rather than write out these equations as shown here, they
can be written much more concisely in matrix form as

Ax � b,

where

A � , x � , b � .

It is this kind of multiplication for which matrix multipli-
cation is designed.

Carefully note that matrix division is not defined.
Although the matrix operations described here do not

possess certain of the properties of arithmetic operations,
they do satisfy these laws

A � B � B � A,
(A � B) � C � A � (B � C),

A(B � C) � AB � AC,
A(BC) � (AB)C,

when the relative sizes of these matrices are such that the
indicated operations are defined.

Another type of matrix operation, which has no arith-
metic analog, is the transpose operation. This operation in-
volves nothing more than interchanging the rows and
columns of the matrix, which is frequently useful for per-
forming the multiplication operation in the desired way.
Thus, for any matrix A � aij, its transpose AT is

AT � aji.
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x4
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
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For example,

� � � � � � � �.

Note that, with the exception of multiplication by a
number, all the preceding operations are defined only when
the two matrices involved are the same size. However, all of
these operations are straightforward because they involve
performing only the same comparison or arithmetic opera-
tion on the corresponding elements of the matrices.

There exists one additional elementary operation that has
not been defined—matrix multiplication—but it is consider-
ably more complicated. To find the element in row i, column
j of the matrix resulting from multiplying matrix A times ma-
trix B, it is necessary to multiply each element in row i of A
by the corresponding element in column j of B and then to add
these products. To do this element-by-element multiplication,
we need the following restriction on the sizes of A and B:

Matrix multiplication AB is defined if and only if the
number of columns of A equals the number of rows of B.

Thus, if A is an m � n matrix and B is an n � s matrix, then
their product is

AB � �
n

k�1
aikbkj,

where this product is an m � s matrix. However, if A is an
m � n matrix and B is an r � s matrix, where n � r, then
AB is not defined.

To illustrate matrix multiplication,

� � �

� .

On the other hand, if one attempts to multiply these matri-
ces in the reverse order, the resulting product

� �
is not even defined.
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1(1) � 2(5)

4(1) � 0(5)

2(1) � 3(5)

1(3) � 2(2)

4(3) � 0(2)

2(3) � 3(2)
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On certain occasions, it is useful to partition a matrix
into several smaller matrices, called submatrices. For ex-
ample, one possible way of partitioning a 3 � 4 matrix
would be

A � � � �,

where

A12 � [a12, a13, a14], A21 � � �,

A22 � � �
all are submatrices. Rather than perform operations element
by element on such partitioned matrices, we can do them in
terms of the submatrices, provided the partitionings are such
that the operations are defined. For example, if B is a par-
titioned 4 � 1 matrix such that

B � � � �,

then

AB � ��Aa1

2

1

1

b
b

1

1

�
�

A
A

1

2

2

2

B
B

2

2
��.

VECTORS

A special kind of matrix that plays an important role in ma-
trix theory is the kind that has either a single row or a sin-
gle column. Such matrices are often referred to as vectors.
Thus,

x � [x1, x2, . . . , xn]

is a row vector, and

x �

is a column vector. (Vectors are denoted in this book by
boldface lowercase letters.) These vectors also are some-
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For example, if

A � ,

then

AT � � �.

SPECIAL KINDS OF MATRICES

In arithmetic, 0 and 1 play a special role. There also exist
special matrices that play a similar role in matrix theory. In
particular, the matrix that is analogous to 1 is the identity
matrix I, which is a square matrix whose elements are 0s
except for 1s along the main diagonal. Thus,

I �

The number of rows or columns of I can be specified as de-
sired. The analogy of I to 1 follows from the fact that for
any matrix A,

IA � A � AI,

where I is assigned the appropriate number of rows and
columns in each case for the multiplication operation to be
defined.

Similarly, the matrix that is analogous to 0 is the null
matrix 0, which is a matrix of any size whose elements are
all 0s. Thus,

0 �

Therefore, for any matrix A,

A � 0 � A, A � A � 0, and
0A � 0 � A0,

where 0 is the appropriate size in each case for the opera-
tions to be defined.
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Thus, x1, x2, x3 can be interpreted as being linearly depen-
dent because one of them is a linear combination of the oth-
ers. However, if x3 were changed to

x3 � [2, 5, 6]

instead, then x1, x2, x3 would be linearly independent be-
cause it is impossible to express one of these vectors (say,
x3) as a linear combination of the other two.

Definition: The rank of a set of vectors is the
largest number of linearly independent vectors that
can be chosen from the set.

Continuing the preceding example, we see that the rank
of the set of vectors x1, x2, x3 was 2 (any pair of the vec-
tors is linearly independent), but it became 3 after x3 was
changed.

Definition: A basis for a set of vectors is a col-
lection of linearly independent vectors taken from
the set such that every vector in the set is a linear
combination of the vectors in the collection (i.e.,
every vector in the set equals the sum of certain
multiples of the vectors in the collection).

To illustrate, any pair of the vectors (say, x1 and x2) con-
stituted a basis for x1, x2, x3 in the preceding example be-
fore x3 was changed. After x3 is changed, the basis becomes
all three vectors.

The following theorem relates the last two definitions.

Theorem A4.1: A collection of r linearly indepen-
dent vectors chosen from a set of vectors is a ba-
sis for the set if and only if the set has rank r.

SOME PROPERTIES OF MATRICES

Given the preceding results regarding vectors, it is now possi-
ble to present certain important concepts regarding matrices.

Definition: The row rank of a matrix is the rank
of its set of row vectors. The column rank of a
matrix is the rank of its column vectors.

For example, if matrix A is

A � ,
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
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


1

1

5

1

1

5

1

0

2
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times called n-vectors to indicate that they have n elements.
For example,

x � [1, 4, �2, �
1
3

�, 7]

is a 5-vector.
A null vector 0 is either a row vector or a column vec-

tor whose elements are all 0s, that is,

0 � [0, 0, . . . , 0] or 0 � .

(Although the same symbol 0 is used for either kind of null
vector, as well as for a null matrix, the context normally will
identify which it is.)

One reason vectors play an important role in matrix the-
ory is that any m � n matrix can be partitioned into either
m row vectors or n column vectors, and important proper-
ties of the matrix can be analyzed in terms of these vectors.
To amplify, consider a set of n-vectors x1, x2, . . . , xm of
the same type (i.e., they are either all row vectors or all col-
umn vectors).

Definition: A set of vectors x1, x2, . . . , xm is said
to be linearly dependent if there exist m numbers
(denoted by c1, c2, . . . , cm), some of which are not
zero, such that

c1x1 � c2x2 � ��� � cmxm � 0.

Otherwise, the set is said to be linearly independent.

To illustrate, if m � 3 and

x1 � [1, 1, 1], x2 � [0, 1, 1], x3 � [2, 5, 5],

then there exist three numbers, namely, c1 � 2, c2 � 3, and
c3 � �1, such that

2x1 � 3x2 � x3 � [2, 2, 2] � [0, 3, 3] � [2, 5, 5]
� [0, 0, 0],

so, x1, x2, x3 are linearly dependent. Note that showing they
are linearly dependent required finding three particular num-
bers (c1, c2, c3) that make c1x1 � c2x2 � c3x3 � 0, which is
not always easy. Also note that this equation implies that

x3 � 2x1 � 3x2.
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Thus, only square matrices can be nonsingular. A use-
ful way of testing for nonsingularity is provided by the fact
that a square matrix is nonsingular if and only if its deter-
minant is nonzero.

Theorem A4.3: (a) If A is nonsingular, there is a
unique nonsingular matrix
A�1, called the inverse of A,
such that AA�1 � I � A�1A.

(b) If A is nonsingular and B is a
matrix for which either AB �
I or BA � I, then B � A�1.

(c) Only nonsingular matrices
have inverses.

To illustrate matrix inverses, consider the matrix

A � � �.

Notice that A is nonsingular since its determinant, 5(�1) �
1(�4) � �1, is nonzero. Therefore, A must have an inverse,
which happens to be

A�1 � � �.

Hence,

AA�1 � � � � � � � �,

and

A�1A � � � � � � � �.
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then the preceding example of linearly dependent vectors
shows that the row rank of A is 2. The column rank of A is
also 2. (The first two column vectors are linearly indepen-
dent but the second column vector minus the third equals
0.) Having the same column rank and row rank is no coin-
cidence, as the following general theorem indicates.

Theorem A4.2: The row rank and column rank of
a matrix are equal.

Thus, it is only necessary to speak of the rank of a matrix.
The final concept to be discussed is the inverse of a

matrix. For any nonzero number k, there exists a recipro-
cal or inverse k�1 � 1/k such that

kk�1 � 1 � k�1k.

Is there an analogous concept that is valid in matrix theory?
In other words, for a given matrix A other than the null ma-
trix, does there exist a matrix A�1 such that

AA�1 � I � A�1A?

If A is not a square matrix (i.e., if the number of rows and
the number of columns of A differ), the answer is never, be-
cause these matrix products would necessarily have a dif-
ferent number of rows for the multiplication to be defined
(so that the equality operation would not be defined). How-
ever, if A is square, then the answer is under certain cir-
cumstances, as described by the following definition and
Theorem A4.3.

Definition: A matrix is nonsingular if its rank
equals both the number of rows and the number of
columns. Otherwise, it is singular.
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APPENDIX 5
TABLES

TABLE A5.1 Areas under the normal curve from K� to �

P{standard normal � K�} � ��

K�

e�x2/2 dx � �

K� .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867

0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681

1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .00990 .00964 .00939 .00914 .00889 .00866 .00842
2.4 .00820 .00798 .00776 .00755 .00734 .00714 .00695 .00676 .00657 .00639

2.5 .00621 .00604 .00587 .00570 .00554 .00539 .00523 .00508 .00494 .00480
2.6 .00466 .00453 .00440 .00427 .00415 .00402 .00391 .00379 .00368 .00357
2.7 .00347 .00336 .00326 .00317 .00307 .00298 .00289 .00280 .00272 .00264
2.8 .00256 .00248 .00240 .00233 .00226 .00219 .00212 .00205 .00199 .00193
2.9 .00187 .00181 .00175 .00169 .00164 .00159 .00154 .00149 .00144 .00139

1
�
�2��



TABLE A5.2 100 � percentage points of Student’s t distribution

P{Student’s t with v Degrees of Freedom � Tabled Value} � �

�
v 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.598
3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.214 12.924
4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587
11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883

20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745

25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659

30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
� 0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

Source: Table 12 of Biometrika Tables for Statisticians, vol. I, 3d ed., 1966, by permission of the Bio-
metrika Trustees.

K� .0 .1 .2 .3 .4 .5 .6 .7 .8 .9

3 .00135 .03968 .03687 .03483 .03337 .03233 .03159 .03108 .04723 .04481
4 .04317 .04207 .04133 .05854 .05541 .05340 .05211 .05130 .06793 .06479
5 .06287 .06170 .07996 .07579 .07333 .07190 .07107 .08599 .08332 .08182
6 .09987 .09530 .09282 .09149 .010777 .010402 .010206 .010104 .011523 .011260

Source: F. E. Croxton, Tables of Areas in Two Tails and in One Tail of the Normal Curve. Copyright
1949 by Prentice-Hall, Inc., Englewood Cliffs, NJ.
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PARTIAL ANSWERS TO
SELECTED PROBLEMS

CHAPTER 3

3.1-1. (a)

3.1-4. (x1, x2) � (13, 5); Z � 31.

3.1-11. (b) (x1, x2, x3) � (26.19, 54.76, 20); Z � 2,904.76.

3.2-3. (b) Maximize Z � 4,500x1 � 4,500x2,

subject to

x1 � 1
x2 � 1

5,000x1 � 4,000x2 � 6,000
400x1 � 500x2 � 600

and

x1 � 0, x2 � 0.

3.4-1. (a) Proportionality: OK since it is implied that a fixed fraction of the radiation dosage at a
given entry point is absorbed by a given area.

Additivity: OK since it is stated that the radiation absorption from multiple beams is ad-
ditive.

Divisibility: OK since beam strength can be any fractional level.

x1

2

1

0 1 2 3 4 5 6

x2



Certainty: Due to the complicated analysis required to estimate the data on radiation ab-
sorption in different tissue types, there is considerable uncertainty about the
data, so sensitivity analysis should be used.

3.4-11. (b) From Factory 1, ship 200 units to Customer 2 and 200 units to Customer 3.
From Factory 2, ship 300 units to Customer 1 and 200 units to Customer 3.

3.4-13. (c) Z � $152,880; A1 � 60,000; A3 � 84,000; D5 � 117,600. All other decision variables
are 0.

3.4-16. (b) Each optimal solution has Z � $13,330.

3.6-1. (c, e)
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3.6-4. (a) Minimize Z � 84C � 72T � 60A,

subject to

90C � 20T � 40A � 200
30C � 80T � 60A � 180
10C � 20T � 60A � 150

and

C � 0, T � 0, A � 0.

CHAPTER 4

4.1-1. (a) The corner-point solutions that are feasible are (0, 0), (0, 1), (�
1
4

�, 1), (�
2
3

�, �
2
3

�), (1, �
1
4

�), and
(1, 0).

4.3-4. (x1, x2, x3) � (0, 10, 6�
2
3

�); Z � 70.

4.6-1. (a, c) (x1, x2) � (2, 1); Z � 7.

4.6-4. (a, c, e) (x1, x2, x3) � (�
4
5

�, �
9
5

�, 0); Z � 7.

4.6-10. (a, b, d) (x1, x2, x3) � (0, 15, 15); Z � 90.
(c) For both the Big M method and the two-phase method, only the final tableau represents a fea-

sible solution for the real problem.

4.6-15. (a, c) (x1, x2) � (��
8
7

�, �
1
7
8
�); Z � �

8
7
0
�.

4.7-6. (a) (x1, x2, x3) � (0, 1, 3); Z � 7.
(b) y1* � �

1
2

�, y2* � �
5
2

�, y3* � 0. These are the marginal values of resources 1, 2, and 3, respectively.

Resource Usage per Unit
of Each Activity

Resource
Resource Activity 1 Activity 2 Totals Available

1 2 1 10 � 10
2 3 3 20 � 20
3 2 4 20 � 20

Unit Profit 20 30 $166.67
Solution 3.333 3.333



CHAPTER 5

5.1-1. (a) (x1, x2) � (2, 2) is optimal. Other CPF solutions are (0, 0), (3, 0), and (0, 3).

5.1-14. (x1, x2, x3) � (0, 15, 15) is optimal.

5.2-2. (x1, x2, x3, x4, x5) � (0, 5, 0, �
5
2

�, 0); Z � 50.

5.3-1. (a) Right side is Z � 8, x2 � 14, x6 � 5, x3 � 11.
(b) x1 � 0, 2x1 � 2x2 � 3x3 � 5, x1 � x2 � x3 � 3.

CHAPTER 6

6.1-2. (a) Minimize W � 15y1 � 12y2 � 45y3,

subject to

�y1 � y2 � 5y3 � 10
2y1 � y2 � 3y3 � 20

and

y1 � 0, y2 � 0, y3 � 0.

6.3-1. (c)
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6.3-7. (c) Basic variables are x1 and x2. The other variables are nonbasic.
(e) x1 � 3x2 � 2x3 � 3x4 � x5 � 6, 4x1 � 6x2 � 5x3 � 7x4 � x5 � 15, x3 � 0, x4 � 0, x5 � 0. Op-

timal CPF solution is (x1, x2, x3, x4, x5) � (�
3
2

�, �
3
2

�, 0, 0, 0).

6.4-3. Maximize W � 8y1 � 6y2,

subject to

y1 � 3y2 � 2
4y1 � 2y2 � 3
2y1 � 2y2 � 1

and

y1 � 0, y2 � 0.

Complementary Basic Solutions

Primal Problem Dual Problem

Basic Solution Feasible? Z � W Feasible? Basic Solution

(0, 0, 20, 10) Yes 0 No (0, 0, �6, �8)

(4, 0, 0, 6) Yes 24 No �1�
1
5

�, 0, 0, �5�
3
5

��
(0, 5, 10, 0) Yes 40 No (0, 4, �2, 0)

�2�
1
2

�, 3�
3
4

�, 0, 0� Yes and optimal 45 Yes and optimal ��
1
2

�, 3�
1
2

�, 0, 0�
(10, 0, �30, 0) No 60 Yes (0, 6, 0, 4)
(0, 10, 0, �10) No 80 Yes (4, 0, 14, 0)
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6.7-2. �10 � � � �
1
9
0
�

6.7-16. (a) b1 � 2, 6 � b2 � 18, 12 � b3 � 24
(b) 0 � c1 � �

1
2
5
�, c2 � 2

CHAPTER 7

7.1-2. (x1, x2, x3) � (�
2
3

�, 2, 0) with Z � �
2
3
2
� is optimal.

7.1-6.
Part New Optimal Solution Value of Z

(a) (x1, x2, x3, x4, x5) � (0, 0, 9, 3, 0) 117
(b) (x1, x2, x3, x4, x5) � (0, 5, 5, 0, 0) 90

New Basic Solution
Part (x1, x2, x3, x4, x5) Feasible? Optimal?

(a) (0, 30, 0, 0, �30) No No
(b) (0, 20, 0, 0, �10) No No
(c) (0, 10, 0, 0, 60) Yes Yes
(d) (0, 20, 0, 0, 10) Yes Yes
(e) (0, 20, 0, 0, 10) Yes Yes
(f) (0, 10, 0, 0, 40) Yes No
(g) (0, 20, 0, 0, 10) Yes Yes
(h) (0, 20, 0, 0, 10, x6 � �10) No No
(i) (0, 20, 0, 0, 0) Yes Yes

Range of � Optimal Solution Z(�)

0 � � � 2 (x1, x2) � (0, 5) 120 � 10�

2 � � � 8 (x1, x2) � ��
1
3
0
�, �

1
3
0
�� �

320 �
3

10�
�

8 � � (x1, x2) � (5, 0) 40 � 5�

6.4-8. (a) Minimize W � 120y1 � 80y2 � 100y3,

subject to

3y1 � y2 � 3y3 � �1
3y1 � y2 � y3 � �2

y1 � 4y2 � 2y3 � �1

and

y1 � 0, y2 � 0, y3 � 0.

6.6-1. (d) Not optimal, since 2y1 � 3y2 � 3 is violated for y1* � �
1
5

�, y2* � �
3
5

�.
(f) Not optimal, since 3y1 � 2y2 � 2 is violated for y1* � �

1
5

�, y2* � �
3
5

�.

6.7-1.

7.2-1. (a, b)



Destination

Today Tomorrow Dummy Supply

Dick 3.0 2.7 0 5
Source

Harry 2.9 2.8 0 4

Demand 3.0 4.0 2
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7.3-3. (x1, x2, x3) � (1, 3, 1) with Z � 8 is optimal.

7.5-6. (x1, x2) � (15, 0) is optimal.

CHAPTER 8

8.1-2. (b)

Optimal Solution

Range of � x1 x2 Z(�)

0 � � � 1 10 � 2� 10 � 2� 30 � 6�
1 � � � 5 10 � 2� 15 � 3� 35 � �
5 � � � 25 25 � � 0 50 � 2�

Task

Backstroke Breaststroke Butterfly Freestyle Dummy

Carl 37.7 43.4 33.3 29.2 0
Chris 32.9 33.1 28.5 26.4 0

Assignee David 33.8 42.2 38.9 29.6 0
Tony 37.0 34.7 30.4 28.5 0
Ken 35.4 41.8 33.6 31.1 0

7.2-4.

8.2-2. (a) Basic variables: x11 � 4, x12 � 0, x22 � 4, x23 � 2, x24 � 0, x34 � 5, x35 � 1, x45 � 0; 
Z � 53.

(b) Basic variables: x11 � 4, x23 � 2, x25 � 4, x31 � 0, x32 � 0, x34 � 5, x35 � 1, x42 � 4; Z � 45.
(c) Basic variables: x11 � 4, x23 � 2, x25 � 4, x32 � 0, x34 � 5, x35 � 1, x41 � 0, x42 � 4; Z � 45.

8.2-8. (a) x11 � 3, x12 � 2, x22 � 1, x23 � 1, x33 � 1, x34 � 2; three iterations to reach optimality.
(b, c) x11 � 3, x12 � 0, x13 � 0, x14 � 2, x23 � 2, x32 � 3; already optimal.

8.2-11. x11 � 10, x12 � 15, x22 � 0, x23 � 5, x25 � 30, x33 � 20, x34 � 10, x44 � 10; cost �
$77.30. Also have other tied optimal solutions.

8.2-12. (b) Let xij be the shipment from plant i to distribution center j. Then x13 � 2, x14 � 10,
x22 � 9, x23 � 8, x31 � 10, x32 � 1; cost � $20,200.

8.3-4. (a)



CHAPTER 9

9.3-3. (a) O � A � B � D � T or O � A � B � E � D � T, with length � 16.

9.4-1. (a) {(O, A); (A, B); (B, C ); (B, E); (E, D); (D, T)}, with length � 18.

9.5-1. (a)

PARTIAL ANSWERS TO SELECTED PROBLEMS 1181

CHAPTER 10

10.2-2. Since activities D, E, J, and K are not immediate predecessors of any other activities, the
corresponding nodes have arcs leading directly to the Finish node.

10.3-4. (b) Ken will be able to meet his deadline if no delays occur.
(c) Critical paths: Start � B � E � J � M � Finish

Start � C � G � L � N � Finish
Focus attention on activities with 0 slack.
(d) If activity I takes 2 extra weeks, there will be no delay because its slack is 3.

10.3-7. Critical path: Start � A � B � C � E � F � J � K � N � Finish
Total duration � 26 weeks

10.4-1. 	 � 37, 
2 � 9

10.4-5. (a)

Arc (1, 2) (1, 3) (1, 4) (2, 5) (3, 4) (3, 5) (3, 6) (4, 6) (5, 7) (6, 7)

Flow 4 4 1 4 1 0 3 2 4 5

(b) Start � A � C � E � F � Finish Length � 51 days Mean critical path
Start � B � D � Finish Length � 50 days

(d) � � 1.4 ⇒ P(T � 57) � 0.9192 (from the Normal table)

10.5-4. (a) Critical path: Start � A � C � E � Finish
Total duration � 12 weeks

(b) New plan:

57 � 50
�

�25�
d � 	p�
�
2

p�

Activity � �2

A 12 0
B 23 16
C 15 1
D 27 9
E 18 4
F 6 4

$7,834 is saved by this crashing schedule.

Activity Duration Cost

A 3 weeks $54,000
B 3 weeks $65,000
C 3 weeks $68,666
D 2 weeks $41,500
E 2 weeks $80,000



10.5-5. (b)
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10.6-2. (d)

Maximum Crash CostTime Cost
Time per Week Start Time Finish

Activity Normal Crash Normal Crash Reduction Saved Time Reduction Time

A 5 3 $20 $30 2 $15 0 2 13
B 3 2 $10 $20 1 $10 0 1 12
C 4 2 $16 $24 2 $14 3 0 17
D 6 3 $25 $43 3 $16 3 0 19
E 5 4 $22 $30 1 $18 2 0 17
F 7 4 $30 $48 3 $16 2 0 19
G 9 5 $25 $45 4 $15 7 1 15
H 8 6 $30 $44 2 $17 9 2 15

Finish Time � 15
Total Cost � $217
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CHAPTER 11

11.3-1.



11.3-14. x1 � �2 � �13� � 1.6056, x2 � 5 � �13� � 1.3944; Z � 98.233.

11.4-3. Produce 2 on first production run; if none acceptable, produce 2 on second run. Expected
cost � $575.

CHAPTER 12

12.1-2. (a) Minimize Z � 4.5xem � 7.8xec � 3.6xed � 2.9xel � 4.9xsm � 7.2xsc � 4.3xsd

� 3.1xsl,

subject to

xem � xec � xed � xel � 2
xsm � xsc � xsd � xsl � 2

xem � xsm � 1
xec � xsc � 1
xed � xsd � 1
xel � xsl � 1

and

all xij are binary.

12.3-1. (b)
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Phase (a) (b)

1 2M 2.945M
2 1M 1.055M
3 1M 0

Market share 6% 6.302%

11.3-8. (a)

Modified Original
Right-Hand Right-Hand

Constraint Product 1 Product 2 Product 3 Product 4 Totals Side Side

First 5 3 6 4 6000 � 6000 6000
Second 4 6 3 5 12000 � 105999 6000

Marginal revenue $70 $60 $90 $80 $80000
Solution 0 2000 0 0

� � � �

0 9999 0 0
Set Up? 0 1 0 0 1 � 2
Start-up Cost $50,000 $40,000 $70,000 $60,000

Contingency Constraints:

Product 3: 0 � 1 :Product 1 or 2
Product 4: 0 � 1 :Product 1 or 2

Which Constraint (0 � First, 1 � Second): 0
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12.4-6. (a) Let xij � �
Mutually exclusive alternatives: For each column of arcs, exactly one arc is included
in the shortest path. Contingent decisions: The shortest path leaves node i only if it en-
ters node i.

12.5-1. (a) (x1, x2) � (2, 3) is optimal.
(b) None of the feasible rounded solutions are optimal for the integer programming problem.

12.6-1. (x1, x2, x3, x4, x5) � (0, 0, 1, 1, 1), with Z � 6.

12.6-7. (b)

if arc i � j is included in shortest path
otherwise.

1
0

Right-Hand
Constraint Product 1 Product 2 Product 3 Total Side

Milling 9 3 5 498 � 500
Lathe 5 4 0 349 � 350
Grinder 3 0 2 135 � 150
Sales Potential 0 0 1 0 � 20

Unit Profit 50 20 25 $2870
Solution 45 31 0

� � �

999 999 0
Produce? 1 1 0 2 � 2

12.3-5. (b, d) (long, medium, short) � (14, 0, 16), with profit of $95.6 million.

12.4-3. (b)

Task 1 2 3 4 5

Assignee 1 3 2 4 5

12.6-9. (x1, x2, x3, x4) � (0, 1, 1, 0), with Z � 36.

12.7-1. (a, b) (x1, x2) � (2, 1) is optimal.

12.8-1. (a) x1 � 0, x3 � 0

CHAPTER 13

13.2-7. (a) Concave.

13.4-1. Approximate solution � 1.0125.

13.5-4. Exact solution is (x1, x2) � (2, �2).

13.5-8. (a) Approximate solution is (x1, x2) � (0.75, 1.5). 

13.6-3.
�4x1

3 � 4x1 � 2x2 � 2u1 � u2 � 0 (or � 0 if x1 � 0).
�2x1 � 8x2 � u1 � 2u2 � 0 (or � 0 if x2 � 0).

� 2x1 � x2 � 10 � 0 (or � 0 if u1 � 0).
� x1 � 2x2 � 10 � 0 (or � 0 if u2 � 0).

x1 � 0, x2 � 0, u1 � 0, u2 � 0.

13.6-8. (x1, x2) � (1, 2) cannot be optimal.
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13.6-10. (a) (x1, x2) � (1 � 3�1/2, 3�1/2).

13.7-2. (a) (x1, x2) � (2, 0) is optimal.
(b) Minimize Z � z1 � z2,

subject to

2x12x2 � � u1 � y1 � y2 � v1� z1 � z2 � 8
2x1 � 2x2 � u1 � y1 � y2 �� v1 z1 � z2 � 4
x1 � x2 u1 � y1 � y2 y2 � v1 z1� � z2 � 2

x1 � 0, x2 � 0, u1 � 0, y1 � 0, y2 � 0, v1 � 0, z1 � 0,
z2 � 0.

13.8-3. (b) Maximize Z � 3x11 � 3x12 � 15x13 � 4x21 � 4x23,

subject to

x11 � x12 � x13 � 3x21 � 3x22 � 3x23 � 8
5x11 � 5x12 � 5x13 � 2x21 � 2x22 � 2x23 � 14

and

0 � xij � 1, for i � 1, 2, 3; j � 1, 2, 3.

13.9-1. (x1, x2) � (5, 0) is optimal.

13.9-10. (a) (x1, x2) � ��
1
3

�, �
2
3

��.

13.10-5. (a) P(x; r) � �2x1 � (x2 � 3)2 � r ��x1 �
1

3
� � �

x2 �
1

3
��.

(b) (x1, x2) � �3 � ��
2
r

��
1/2

, 3 � ��
2
r

��
1/3

	.

CHAPTER 14

14.2-2. (a) Player 1: strategy 2; player 2: strategy 1.

14.2-7. (a) Politician 1: issue 2; politician 2: issue 2.
(b) Politician 1: issue 1; politician 2: issue 2.

14.4-3. (a) (x1, x2) � (�
2
5

�, �
3
5

�); (y1, y2, y3) � (�
1
5

�, 0, �
4
5

�); v � �
8
5

�.

14.5-2. (a) Maximize x4,

subject to

5x1 � 2x2 � 3x3 � x4 � 0
3x1 � 4x2 � 2x3 � x4 � 0
3x1 � 3x2 � 2x3 � x4 � 0

x1 � 2x2 � 4x3 � x4 � 0
x1 � x2 � x3 � x4 � 1

and

x1 � 0, x2 � 0, x3 � 0, x4 � 0.
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State of Nature

Alternative Sell 10,000 Sell 100,000

Build Computers 0 54
Sell Rights 15 15

A2

A3

A1

50
40

25

0.2 0.4 0.6 0.8 1.0

Expected
Profit

($thousands) Crossover
points

Prior Probability of S1

(c) Let p � prior probability of selling 10,000. They should build when p � 0.722, and sell when
p � 0.722.

15.2-3. (c) Warren should make the countercyclical investment.

15.2-5. (d)

Data: P (Finding  State)

State of Prior Finding

Nature Probability Sell 10,000 Sell 100,000

Sell 10,000 0.5 0.666666667 0.333333333
Sell 100,000 0.5 0.333333333 0.666666667

15.3-3. (b) EVPI � EP (with perfect info) � EP (without more info) � 53 � 35 � $18
(c) Betsy should consider spending up to $18 to obtain more information.

15.3-8. (a) Up to $230,000
(b) Order 25.

Posterior P (State  Finding)
Probabilities: State of Nature

Finding P (Finding) Sell 10,000 Sell 100,000

Sell 10,000 0.5 0.666666667 0.333333333
Sell 100,000 0.5 0.333333333 0.666666667

A2 and A3 cross at approximately p � 0.25. A1 and A3 cross at approximately p � 0.43.

15.2-8. Order 25.

15.3-1. (a) EVPI � EP (with perfect info) � EP (without more info) � 34.5 � 27 � $7.5 million.
(d)

CHAPTER 15

15.2-1. (a)
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(c) EVPI � EP (with perfect info) � EP (without more info) � 11,000 � 8,000 � $3,000. This in-
dicates that the credit-rating organization should not be used.

15.3-13. (a) Guess coin 1.
(b) Heads: coin 2; tails: coin 1.

15.4-1. (b) The optimal policy is to do no market research and build the computers.

15.4-4. (c) EVPI � EP (with perfect info) � EP (without more info) � 1.8 � 1 � $800,000
(d)

(f, g) Leland University should hire William. If he predicts a winning season then they should hold
the campaign. If he predicts a losing season then they should not hold the campaign.

15.4-10. (a) Choose to introduce the new product (expected payoff is $12.5 million).
(b) EVPI � EP (with perfect info) � EP (without more info) � 20 � 12.5 � $7.5 million
(c) The optimal policy is not to test but to introduce the new product.

15.5-2. (a) Choose not to buy insurance (expected payoff is $249,840).
(b) u(insurance) � 499.82

u(no insurance) � 499.8
Optimal policy is to buy insurance.

15.5-4. u(10) � 9

State of Nature

Alternative Poor Risk Average Risk Good Risk

Extend Credit �15,000 10,000 20,000
Don’t Extend Credit 0 0 0

Prior Probabilities 0.2 0.5 0.3

15.3-9. (a)

0.6

0.4

0.25

0.25

0.75

0.75

0.45

0.15

0.1

0.3

0.818

0.333

0.182

0.667

W
in

Lose

lose, given win

win, given win

lose, given lose

win, given lose

win and win

win and lose

lose and win

lose and lose

win, given win

win, given lose

lose, given win

lose, given lose

Prior
Probabilities

P (state)

Conditional
Probabilities

P (finding|state)

Joint
Probabilities

P (state and finding)

Posterior
Probabilities

P (state|finding)
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CHAPTER 16

16.3-3. (c) �0 � �1 � �2 � �3 � �4 � �
1
5

�.

16.4-1. (a) All states belong to the same recurrent class.

16.5-8. (a) �0 � 0.182, �1 � 0.285, �2 � 0.368, �3 � 0.165.
(b) 6.50

CHAPTER 17

17.2-1. Input source: population having hair; customers: customers needing haircuts; and so forth
for the queue, queue discipline, and service mechanism.

17.2-2. (b) Lq � 0.375
(d) W � Wq � 24.375 minutes

17.4-2. (c) 0.0527

17.5-5. (a) State:

(c) P0 � �
2
9
6
�, P1 � �

2
9
6
�, P2 � �

1
3
3
�, P3 � �

1
1
3
�.

(d) W � 0.11 hour.

17.5-9. (b) P0 � �
2
5

�, Pn � (�
3
5

�)(�
1
2

�)n

(c) L � �
6
5

�, Lq � �
3
5

�, W � �
2
1
5
�, Wq � �

5
1
0
�

17.6-1. (a) P0 � P1 � P2 � P3 � P4 � 0.96875 or 97 percent of the time.

17.6-21. (a) Combined expected waiting time � 0.211
(c) An expected process time of 3.43 minutes would cause the expected waiting times to be the

same for the two procedures.

17.6-29. (a) 0.429

17.6-33. (a) three machines
(b) three operators

17.7-1. (a) Wq (exponential) � 2Wq (constant) � �
8
5

�Wq (Erlang).
(b) Wq (new) � �

1
2

�Wq (old) and Lq (new) � Lq (old) for all distributions.

17.7-6. (a, b) Under the current policy an airplane loses 1 day of flying time as opposed to 3.25
days under the proposed policy.
Under the current policy 1 airplane is losing flying time per day as opposed to 0.8125
airplane.

15 10 5

15

0 1 2 3

15 15



PARTIAL ANSWERS TO SELECTED PROBLEMS 1189

17.7-10.

17.8-1. (a) This system is an example of a nonpreemptive priority queueing system.

(c) � �
0
0
.
.
0
0
3
8
3
3

� � 0.4

17.8-4. (a) W � �
1
2

�

(b) W1 � 0.20, W2 � 0.35, W3 � 1.10
(c) W1 � 0.125, W2 � 0.3125, W3 � 1.250

CHAPTER 18

18.3-1. (a) E(WC ) � 16
(b) E(WC ) � 26.5

18.4-2. 4 cash registers

18.4-5. (a) Model 2 with s fixed at 1
(b) Adopt the proposal.

18.4-10. (d) E(TC ) for status quo � $85 per hour
E(TC ) for proposal � $83 per hour

18.4-13. (a) The customers are trucks to be loaded or unloaded and the servers are crews. The sys-
tem currently has 1 server.

(e) A one-person team should not be considered since that would lead to a utilization factor of 

 � 1, which is not permitted in this model.

(f, g) E(TC ) for 4 members � $82.50 per hour
E(TC ) for 3 members � $65 per hour
E(TC ) for 2 members � $55 per hour
A crew of 2 people will minimize the expected total cost per hour.

18.4-25. One doctor: E(TC ) � $624.80, two doctors: $92.50; have two doctors.

CHAPTER 19

19.3-1. (a) t � 1.83, Q � 54.77
(b) t � 1.91, Q � 57.45, S � 52.22

19.3-3. (a)

Wq for first-class passengers
����
Wq for coach-class passengers

Service Distribution P0 P1 P2 L

Erlang 0.561 0.316 0.123 0.561
Exponential 0.571 0.286 0.143 0.571

Data

D � 676 (demand/year)
K � $75 (setup cost)
h � $600.00 (unit holding cost)
L � 3.5 (lead time in days)

WD � 365 (working days/year)

Results

Reorder point � 6.5
Annual setup cost � $10,140

Annual holding cost � $ 1,500

Total variable cost � $11,640

Decision

Q � 5 (order quantity)
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Data

D � 676 (demand/year)
K � $75 (setup cost)
h � $600 (unit holding cost)
L � 3.5 (lead time in days)

WD � 365 (working days/year)

Results

Reorder point � 6.48
Annual setup cost � $3,900

Annual holding cost � $3,900

Total variable cost � $7,800

Decision

Q � 13 (order quantity)

The results are the same as those obtained in part (c).
(f) Number of orders per year � 52

ROP � 6.5 � inventory level when each order is placed
(g) The optimal policy reduces the total variable inventory cost by $3,840 per year, which is a 33

percent reduction.

19.3-7. (a) h � $3 per month which is 15 percent of the acquisition cost.
(c) Reorder point is 10.
(d) ROP � 5 hammers, which adds $20 to his TVC (5 hammers � $4 holding cost).

19.3-9. t � 3.26, Q � 26,046, S � 24,572

19.3-15. (a) Optimal Q � 500

19.4-4. Produce 3 units in period 1 and 4 units in period 3.

19.5-6. (b) Ground Chuck: R � 145.
Chuck Wagon: R � 829.

(c) Ground Chuck: safety stock � 45.
Chuck Wagon: safety stock � 329.

(f) Ground Chuck: $39,378.71.
Chuck Wagon: $41,958.61.
Jed should choose Ground Chuck as their supplier.

(g) If Jed would like to use the beef within a month of receiving it, then Ground Chuck is the bet-
ter choice. The order quantity with Ground Chuck is roughly 1 month’s supply, whereas with
Chuck Wagon the optimal order quantity is roughly 3 month’s supply.

19.6-4. (a) Optimal service level � 0.667
(c) Q* � 500
(d) The probability of running short is 0.333.
(e) Optimal service level � 0.833

19.6-8. (a) This problem can be interpreted as an inventory problem with uncertain demand for a
perishable product with euro-traveler’s checks as the product. Once Stan gets back from
his trip the checks are not good anymore, so they are a perishable product. He can re-
deposit the amount into his savings account but will incur a fee of lost interest. Stan
must decide how many checks to buy without knowing how many he will need.

Cunder � value of 1 day � cost of 1 day � cost of 1 check � $49.
Cover � cost of check � lost interest � $3

(b) Purchase 4 additional checks.



(c) Optimal service level � 0.94
Buy 4 additional checks.

19.7-3. If x � 46, order 46 � x units; otherwise, do not order.

19.7-10. (a) G(y) � �
1
3
0
�y � 70e�y/25 � �

1
2
5
�

(b) (k, Q) � (21, 100) policy

CHAPTER 20

20.4-1. (c) Forecast � 36

20.4-3. Forecast � 2,091

20.4-7. Forecast (0.1) � 2,072

20.6-2. Forecast � 552

20.6-4. Forecast for next production yield � 62 percent

20.7-1. (a) MAD � 15

20.7-4. (a) Since sales are relatively stable, the averaging method would be appropriate for fore-
casting future sales. This method uses a larger sample size than the last-value method,
which should make it more accurate. Since the older data are still relevant, they should
not be excluded, as would be the case in the moving-average method.

(e) Considering the MAD values, the averaging method is the best one to use.
(f) Unless there is reason to believe that sales will not continue to be relatively stable, the averag-

ing method is likely to be the most accurate in the future as well. However, 12 data points gen-
erally are inadequate for drawing definitive conclusions.

20.9-1. (b) y � 410 � 17.6x
(d) y � 604

CHAPTER 21

21.2-1. (c) Use slow service when no customers or one customer is present and fast service when
two customers are present.

21.2-2. (a) The possible states of the car are dented and not dented.
(c) When the car is not dented, park it on the street in one space. When the car is dented, get it re-

paired.

21.2-5. (c) State 0: attempt ace; state 1: attempt lob.

21.3-2. (a) Minimize Z � 4.5y02 � 5y03 � 50y14 � 9y15,

subject to

y01 � y02 � y03 � y14 � y15 � 1

y01 � y02 � y03 � ��
1
9
0
�y01 � �

4
5
9
0
�y02 � y03 � y14� � 0

y14 � y15 � ��
1
1
0
�y01 � �

5
1
0
�y02 � y15� � 0

PARTIAL ANSWERS TO SELECTED PROBLEMS 1191



and

all yik � 0.

21.3-5. (a) Minimize Z � ��
1
8

�y01 � �
2
7
4
�y02 � �

1
2

�y11 � �
1
5
2
�y12,

subject to

y01 � y02 � ��
3
8

�y01 � y11 � �
7
8

�y02 � y12� � 0

y11 � y12 � ��
5
8

�y01 � y11 � �
1
8

�y02� � y12 � 0

y01 � y02 � �
1
8

�y11 � y12 � 1

and

yik � 0 for i � 0, 1; k � 1, 2.

21.4-2. Car not dented: park it on the street in one space. Car dented: repair it.

21.4-5. State 0: attempt ace. State 1: attempt lob.

21.5-1. Reject $600 offer, accept any of the other two.

21.5-2. (a) Minimize Z � 60(y01 � y11 � y21) � 600y02 � 800y12 � 1,000y22,

subject to

y01 � y02 � (0.95)��
5
8

��(y01 � y11 � y21) � �
5
8

�

y11 � y12 � (0.95)��
1
4

��(y01 � y11 � y21) � �
1
4

�

y21 � y22 � (0.95)��
1
8

��(y01 � y11 � y21) � �
1
8

�

and

yik � 0 for i � 0, 1, 2; k � 1, 2.

21.5-3. After three iterations, approximation is, in fact, the optimal policy given for Prob. 21.5-1.

21.5-11. In periods 1 to 3: Do nothing when the machine is in state 0 or 1; overhaul when machine
is in state 2; and replace when machine is in state 3. In period 4: Do nothing when machine is in
state 0, 1, or 2; replace when machine is in state 3.

CHAPTER 22

22.1-1. (b) Let the numbers 0.0000 to 0.5999 correspond to strikes and the numbers 0.6000 to
0.9999 correspond to balls. The random observations for pitches are 0.7520 � ball,
0.4184 � strike, 0.4189 � strike, 0.5982 � strike, 0.9559 � ball, and 0.1403 � strike.

22.1-10. (b) Use � � 4 and 	 � 5.
(i) Answers will vary. The option of training the two current mechanics significantly decreases the

waiting time for German cars, without a significant impact on the wait for Japanese cars, and
does so without the added cost of a third mechanic. Adding a third mechanic lowers the aver-
age wait for German cars even more, but comes at an added cost for the third mechanic.
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22.3-1. (a) 5, 8, 1, 4, 7, 0, 3, 6, 9, 2

22.4-2. (b) F(x) � 0.0965 when x � �5.18
F(x) � 0.5692 when x � 18.46
F(x) � 0.6658 when x � 23.29

22.4-5. (a) x � �r�

22.4-8. (a) Here is a sample replication.
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22.4-13. (a) x � �4 ln (1 � r)
(b) x � �2 ln [(1 � r1)(1 � r2)]

(c) x � 4

6

i�1
ri � 8

22.7-1. Use the first 10 three-digit decimals from Table 22.3 and generate observations from

xi � �
1 �

1
ri

�.

Summary of Results:

Win? (1 � Yes, 0 � No) 0
Number of Tosses � 3

Simulated Tosses

Toss Die 1 Die 2 Sum

1 4 2 6
2 3 2 5
3 6 1 7
4 5 2 7
5 4 4 8
6 1 4 5
7 2 6 8

Results

Win? Lose? Continue?

0 0 Yes
0 0 Yes
0 1 No

NA NA No
NA NA No
NA NA No
NA NA No

22.7-4. (a) Let the numbers 0.0000 to 0.3999 correspond to a minor repair and 0.4000 to 0.9999
correspond to a major repair. The average repair time is then (1.224 � 0.950 � 1.610)/
3 � 1.26 hours.

(c) The average repair time is 1.28 hours.
(e) The average repair time is 1.09 hours.
(f) The method of complementary random numbers in part (e) gave the closest estimate. It per-

forms well because using complements helps counteract the more extreme random numbers
(such as 0.9503).

22.8-1. (a) Est. {Wq} � �
7
3

� and P{1.572 � Wq � 3.094} � 0.90

Method: Analytic Monte Carlo Stratified sampling Complementary random numbers

Mean: � 4.3969 8.7661 3.812
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templates, 947–948

Economic trends, 1011–1012
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Edge of the feasible region, 110, 113–119, 193,
194

Efficient frontier, 659
Either-or-constraints, 586–587
Elementary algebraic operations, 121–122
Elementary row operations, 126, 146
Employees, 9
Employment level scheduling, 552–559
Energy Electric System, 781
Entering basic variable, 120, 311

network simplex method, 441–444
tie-breaking for, 128–129

Enumeration procedure, 604
Enumeration tree, 606
Environmental Protection Agency, 50n
EOQ; see Economic order quantity model
Equality constraint, 66, 114–115, 705,

1166–1167
in artificial-variable technique, 132–136

Equilibrium solution, 732
Equivalence property, 886
Ergodic Markov chain, 813
Erlang distribution, 837, 838, 855, 873–875,

878–879, 890, 1107–1108
Erlang’s loss system, 863
Error tolerance, 704
Excel Solver, 5–6, 31, 67–72, 157–159, 162,

163, 266, 272, 358–365, 389–390,
413–414, 428–429, 434–435, 579–580,
689–690, 769–770, 947–948, 1112,
1115–1116, 1156–1157

Excel VBA macro language, 73
Excess demand capacity, 364
Excess supply capacity, 364
Expected average cost per unit time, 1055,

1077
for complex cost functions, 816–818
in Markov chains, 814–816

Expected interarrival time, 839
Expected monetary value criterion, 754n
Expected payoff, decision trees, 767–769
Expected recurrence time, 820
Expected return, 658
Expected total discounted cost, 1069, 1077
Expected utility, 773
Expected value

and experimentation, 764
of perfect information, 762–763
probability theory definition, 734

Experimentation
decision making with, 758–764
decision making without, 751–758
expected value of, 764
value of, 762–764

Exponential demand distribution, 974–975

Exponential distribution, 825, 836, 858, 890,
1107–1108

calling population, 866
with a parameter, 842
role in queueing theory, 841–848

Exponential growth, 600
Exponential smoothing forecasting procedure,

1017–1018
for linear trend model, 1021–1025

Exponential time algorithm, 165–166
Exponential utility function, 776
Extreme point, 1164

Fair game, 731
Fanning-out procedure, 426
Farm management, case, 304–307
Fathom, 607
Fathoming, 605

binary integer programming, 607–609,
614–618

integer programming, 614–616
mixed integer programming, 618

Feasibility, condition for, 246
Feasibility test, 311

in sensitivity analysis, 261
Feasible region, 28–29, 34, 46, 110, 663
Feasible solution, 34
Feasible solutions property, 355, 362, 432
Feasible spanning tree, 439–440
Federal National Mortgage Association, 781
Field test, 1113
Financial risk analysis, 1099–1100, 1122–1126
Finite calling population variation, 908

of M/M/s model, 864–866
Finite queues, 836
Finite queue variation of M/M/s model, 861–863
Finite state space, 802
First local maximum, 678
First passage times, 818–820
First-priority rules, 336, 337
First-stage objective function, 337
Fixed lead time, 940
Fixed-time incrementing, 1093–1095, 1132
Fixing variables, 624–625
Fleet assignment problem, 584
Flow diagram, 1111
Flow in, 414
Flow out, 414
Flows, 410
Forecasting, 64, 1009–1038

applications
economic trends, 1011–1012
production yields, 10111
sales forecasting, 1010
spare parts needs, 1010–1011

Forecasting—Cont.
applications—Cont.

staffing needs, 1012–1013
Box-Jenkins method, 1026–1028
case, 1048–1052
causal, 1028–1029
conclusions, 1038
constant-level time series, 1016–1018
exponential smoothing for nonlinear trend

model, 1021–1025
judgmental methods, 1009, 1037

consumer market survey, 1014
Delphi method, 1014
jury of executive opinion, 1014
manager’s opinion, 1013
sales for composite, 1014

linear regression, 1028–1036
measures of uncertainty, 1035–1036
more than one time period ahead, 1025
in practice, 1036–1038
regression analysis, 1009
with seasonal effects, 1018–1021
statistical methods, 1009, 1037

applications, 1013
time series, 1009, 1014–1016

Forecasting errors, 1025–1026
Forks, 765
Forward pass, 480–482
Fractional programming, 668–669
Frank-Wolfe algorithm, 698–702
Franz Edelman Awards for Management

Science Achievement, 581, 923
Free goods, 155
Frequency distribution, 1122
Frontline systems, 162
Fully crashed activities, 493, 495
Functional constraints, 33, 75–76, 77–78, 161,

318
Functional constraints in � form, 137–140
Functional relationship, 1029–1030
Function value, 42
Fundamental insight, 208, 212–220

adapting to other model forms, 218–219
applications, 219–220
duality theory, 232–234
mathematical summary, 216–218
in sensitivity analysis, 255–256
transportation simplex method, 365–366
verbal description, 212

Fundamental theorem, network simplex
method, 440

Game theory
compared to decision analysis, 728
cooperative game, 742
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Game theory—Cont.
definition, 726
dominated strategies, 729–731
extensions, 741–742
fair game, 731
graphical solution procedure, 735–738
infinite games, 742
minimax criterion, 732
minimax theorem, 734
mixed strategies, 733–735
noncooperative game, 742
nonzero-sum game, 742
n-person game, 742
primary objective, 727
solved by linear programming, 738–741
solving simple games, 728–733
stable solution, 732
strategies, 726–728
two-person, zero-sum game, 726–729, 742
unstable solution, 733
value of the game, 731

Gamma distribution, 855n, 873
GAMS, 73
Gantt charts, 472
Gasoline blending, 56–57
Gaussian elimination, 118, 122, 135, 141, 146,

213, 260–261, 262, 274, 278, 283
General Agreement on Tariffs and Trade, 402n
General distribution, 838
Generalized Erlangian distributions, 879
Generalized positive polynomials, 668
Generalized reduced gradient method, 697
General Motors, 780
General-purpose algorithm, 386
General-purpose programming language,

1112–1113
General-purpose simulation language, 1112
Genetic algorithms, 604
Geometric concepts, 109
Geometric programming, 668
Global maximization, 668
Global maximum, 662, 704, 1165
Global minimum, 662, 1165
Global supply chain, 582
Goal programming, 309

nonpreemptive, 333–335
preemptive, 333, 335–339
and solution procedures, 332–333
types of goals, 332–333

Government, 9
Government space project, 549–552
Gradient, 674

of objective function, 322
projected, 323–325
relevance of, 321–323

Gradient algorithms, 697, 702
Gradient search procedure, 674–678
Graphical method, 30, 46

decision analysis, 779
game theory, 735–738
nonlinear programming, 659–664

Grass-roots forecasting approach, 1014
Group programming, case, 347–349

Health care simulation, 1100
Heuristic algorithms, 605
Heuristics, 624n
Hewlett-Packard, 4, 936, 985–986
Hidden costs, 387
Hidroeléctrica Español, 1010
Histogram, 1118, 1126
Holding cost, 937, 939, 964
Holding time, 837
Homart Development Company, 584
Hyperexponential distribution, 878–879
Hyperplane, 191, 194, 196

IBM, 4, 18, 19, 21, 936, 984–985, 1010, 1105
Optimization Subroutine Library, 623

IBM PC Company, 1098
ICI Americas, 781
Identity matrix, 211, 214, 1171
ILOG, Inc., 161, 162
Immediate predecessors, 469–470, 471
Implementation of models, 20–21
Increasing marginal utility for money, 772
Incremental analysis, 220, 259–260
Incumbent, 607
Independent demand, 949
Independent Living Center, 780
Independent Poisson processes, 887–888
Independent variable, 1030
Indicating variables, 199
Inequality constraints, 114–115
Infeasible solution, 34
Infinite games, 742
Infinite queue, 836
Infinite queues in series, 886–887
Inflection point, 1165
Influence diagram, 779
Initial basic feasible solution, 118–119, 132,

134, 148–149
constructing, 369–372

Initial basis matrix, 211
Initialization, 111–112, 118, 125, 144, 310,

368–374
Initial state probabilities, 1074
Initial transportation simplex tableau, 374, 376
Input constraints, 32
Input source, queueing theory, 835

Integer linear programming, 576
Integer programming, 64, 162, 576–631

BIP applications
airline industry, 584–585
capital budgeting, 580–581
dispatching shipments, 582–583
production and distribution, 581–582
scheduling asset divestiture, 584
scheduling interrelated activities, 583–584
site selection, 581

branch-and-bound technique
bounding, 613
branching, 613
fathoming, 614–616

California Manufacturing Company, 577–580
cases, 642–653
formulation with binary variables, 585–600

with auxiliary binary variables, 593–598
binary representation of general integer

variables, 590–591
covering all characteristics, 598–600
either-or constraints, 586–587
examples, 591–600
fixed-charge problem, 589–590
functions with n possible values, 588–589
K out of N constraints, 587
violating proportionality, 594–598
when decision variables are continuous,

592–594
prototype example, 577–580
software options, 579–580
solving problems, 600–604
special type of problems, 601

Integer programming models, 42
Integer-restricted variables, 616–618
Integer solutions property, 357, 381, 384, 433,

1063
Interactive sessions, 21
Interactive system, 63
Interarrival time, 836, 838

expected, 839
probability distribution, 841

Interfaces, 3–5, 354, 430, 431, 580–585, 779–781,
923, 924, 925, 963, 1013, 1099, 1100

Interior-point algorithm, 25, 164, 320–332, 703
centering scheme, 325–326
gradient

projected, 323–325
relevance, 321–323

illustration of, 327–332
summary of, 328

Interior-point approach, 163–168
compared to simplex, 165–166
complementary role with simplex, 167–168
key solution concept, 164–165
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Interior points, 164
Intermediate storage facilities, 430
Internal service, 841
International Federation of Operational

Research Societies, 3
International Mathematics and Statistics

Library, 1105
International Paper Company, 430
Interrelated activities scheduling, 583–584
Interrelated decisions, 543
Intersection of constraint boundaries, 194
Inventories

backlogging, 939
backorders, 943
carrying cost, 935
computerized systems, 956–957, 984–

985
continuous review, 940–941
discount factor, 940
discount rate, 940
holding cost, 937
no backlogging, 939
ordering cost, 937
periodic review, 940–941
replenishment, 938
revenue, 939–940
safety stock, 959
salvage cost, 940
salvage value, 940
setup cost, 937
shortage cost, 937
and simulation, 1098
spare parts needs, 1010–1011
stockout, 943
surplus stock, 1004–1008
two-bin system, 956
unit production cost, 937

Inventory control, 1000–1002
Inventory holding cost rate, 948
Inventory policy, 936, 957

just-in-time system, 935, 950–951
optimal, 953
simulation, 1116–1118

Inventory theory, 935–987
cases, 1000–1008
components of models, 938–941
conclusions, 987
and costs, 937–939
deterministic models

continuous review, 941–951
periodic review, 951–956

economic order quantity model, 941–951
examples, 936–938
multiechelon systems, 984–985
multiproduct systems, 983

Inventory theory—Cont.
stochastic models

continuous review, 956–961
periodic review, 975–983
single-period for perishable products,

961–975
stochastic versus deterministic models, 940
supply chain management, 985–986

Inverse of a matrix, 1173
Inverse transformation method, 1106–1107
IP; see Integer programming
Irreducible ergodic Markov chain, 813
Irreducible Markov chains, 811
Iterations, 111–112, 113, 120–122, 125–126,

161, 166, 311, 376–379, 1116
Iterative algorithm, 113, 164

Jackson networks, 887–889
Jet engine problem, 359–362
Joint probability, 886, 889
Judgmental forecasting methods, 1009, 1037

consumer market survey, 1014
Delphi method, 1014
jury of executive opinion, 1014
manager’s opinion, 1013
sales for composite, 1014

Jury of executive opinion, 1014
Just-in-time inventory system, 935, 950–951

Karush-Kuhn-Tucker conditions, 705
for constrained optimization, 679–683
for quadratic programming, 685–686

KayCorp, 925
Key solution concept, 164–165
Known constant, 43
Known demand, 936, 951, 958

L. L. Bean, 1013
Lag, 1027
Lagrange multipliers, 680, 1167
Lagrangian function, 702, 1167
Lagrangian relaxation, 613
Last chance schedule, 481–482
Last-value forecasting method, 1016
Las Vegas problem, 565–567
Latest finish time, 480–482
Latest finish time rule, 480
Latest start time, 480–482
Lead time, 940, 942, 957
Learmouth-Lewis generator, 1105
Learning curve effect, 656
Leaving basic variable, 121, 150, 311

network simplex method, 444–448
tie-breaking for, 129

Length of a cycle, 1132
Length of a path, 475
LINDO, 6, 31, 78–79, 159, 162–163, 266, 272,

579–580, 689–690, 702, 1158
introduction to, 169–171

LINDO System, Inc., 74
Linear approximation method, 697–698
Linear complementarity problem, 670
Linear fractional programming, 669
Linear function, 24, 913
Linear goal programming; see Goal

programming
Linearly constrained optimization, 665
Linearly dependent vector, 1172
Linearly independent vector, 1172
Linear programming, 2, 24–89; see also

Parametric linear programming; Simplex
method; Upper bound technique

additional examples
controlling pollution, 50–52
distribution network, 59–61
personnel scheduling, 57–59
radiation therapy, 44–46
reclaiming solid wastes, 53–57
regional planning, 46–49

assumptions
additivity, 40–42
certainty, 42, 156
divisibility, 42–43
in perspective, 43–44
proportionality, 36–40

cases, 61–67
auto assembly, 103–104
cafeteria costs, 104–106
call center staffing, 106–108
personnel scheduling, 63–65
petroleum industry, 65–67
product mix, 62–63

common applications, 24
compared to integer programming, 600–

604
for crashing decisions, 496–501
duality concept, 230
interior-point algorithm, 163–168
Markov decision processes, 1059–1064

discounted cost criterion, 1073–1075
formulation of, 1061–1063
randomized policies, 1060–1061
solving example by, 1063

maximum flow problem, 422
modeling languages, 73–74
network optimization models, 405–406
parametric, 159–160
postoptimality analysis, 152
primal-dual table, 231–233
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Linear programming—Cont.
problem formulation, 45–46, 48–49, 52–56,

58–59, 60–61
conclusions, 30
graphical solution, 27–30
and OR Courseware, 30–31
problem formulation, 26–27

and separable programming, 692–696
of simplex method, 160–163
with slack variables, 198–199
software, 161–163
to solve game theory, 738–741
on spreadsheets, 67–72
terminology for, 31–33

Linear programming constraints, 685–686
Linear programming model, 11, 25, 31–36

conversion to standard form, 248
LINGO formulation, 82–86
minimum cost flow problem, 433
MPL formulation, 76–78
other legitimate forms, 33
standard form, 32–33
terminology for solutions, 33–36
very large, 72–79

Linear regression, 1028–1036, 1037
confidence interval, 1033–1034, 1035
degree of association model, 1029
dependent variable, 1030
functional relationship, 1029–1030
independent variable, 1030
method of least squares, 1030–1033
prediction interval, 1034–1036
regression line, 1032
simultaneous tolerance levels, 1035–1036

Linear trend, 1022
Linear trend time series, 1015

exponential smoothing method, 1021–1025
Line segment, 193, 1161–1162
LINGO, 6, 31, 73, 74, 78–89, 163, 689–690,

702, 1158
Links, 408
Little’s formula, 840, 881, 889
Local maximization, 668
Local maximum, 704
Local minimum, 1165
Long-run profit maximization, 8
Lost revenue from unsatisfied demand, 964
Lotus 1-2-3, 10, 162
Lower, one-sided goal, 332
LP relaxation, 601–603, 606–607, 609, 616,

630

Machines, 834
Mainframe computers, 161
Management information system, 9, 19

Management science, 2
Managerial decisions, 230
Managerial reports, 19
Manager’s opinion forecasting, 1013
Manufacturing jobs, 834
Manufacturing systems, 1099
Marginal cost, 656–657, 915
Marginal cost analysis, 495
Marginal profitability, 690
Marginal return, 38–39
Marketing costs, 39
Markov chains, 802–827, 1053, 1054

absorbing states, 820–822
Chapman-Kolmogorov equations, 808–810
classification of, 810–812

absorbing state, 811–812
periodicity properties, 812
recurrent and transition states, 811–812

continuous time, 864, 879
in birth and death process, 848
example, 826–827
formulation, 822–823
key random variables, 823–825
steady-state probabilities, 825–827

first passage times, 818–820
formulating example, 805–807
gambling example, 807–808
inventory example, 803
irreducible, 811
long-run properties

expected average cost per unit time,
814–816

expected average cost per unit time for
complex cost functions, 816–818

steady-state probabilities, 812–814
Markovian property, 803, 805, 823
n-step transition probabilities, 804
random walk, 821
stationary transition probabilities, 803–804
stochastic processes, 802
stock examples, 807
and transition matrix, 804–805
transition probabilities, 803–804

Markov decision processes, 1053–1077
conclusions, 1077
deterministic policy, 1057
discounted cost criterion, 1069–1077
expected average cost per unit time, 1055
linear programming and optimal policies,

1058–1064
formulation of, 1061–1063
randomized policies, 1060–1061
solving example by, 1063

model, 1056–1059
policy improvement algorithm, 1064–1069

Markov decision processes—Cont.
prototype example, 1053–1056

cost data, 1056
discounted cost method, 1072–1073
and linear programming, 1061, 1063
method of successive approximations,

1076–1077
solved by linear programming, 1074–1074
solved by policy improvement algorithm,

1066–1069
solving by exhaustive enumeration,

1057–1059
stationary policy, 1057

Markovian distribution, 838
Markovian property, 540, 803, 805, 823, 1132
Marshall’s, Inc., 431
Master production schedule, 950
Material requirements planning, 949–950
Mathematical models

advantages, 11–12
applying, 18–20
assignment problem, 383
deriving solutions from, 14–16
formulating, 10–13
implementation, 20–21
inventory system, 936
in linear programming, 24–25
modeling languages, 73–74
pitfalls, 12
testing, 16–18
transportation problem, 360–362, 363–364

Matrices, 1169–1173
basis, 205
column rank, 1172–1173
diagonal, 327
identity, 211, 214, 1171
initial basis, 211
inverse of, 1173
multiplying, 1169–1170
nonsingular, 1173
null, 1171
operations of, 1169–1171
positive semidefinite, 684
projection, 323
row rank, 1172–1173
singular, 1173
submatrices, 1171
subtraction, 1169
transition, 804–805, 809–810, 812
transpose operation, 1170
vectors, 1171–1172

Matrix form, 160
Matrix form of equations, 206–208
Matrix multiplication, 1170
Max-flow min-cut theorem, 426–427
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Maximal Software, Inc., 73
Maximin payoff criterion, 752–753
Maximum flow problem, 406, 428–429, 601

algorithm, 422–424
applications, 421–422
augmenting path algorithm, 423–424
finding augmenting path, 426–427
and minimum cost flow problem, 436–437
using Excel, 428–429

Maximum likelihood criterion, 753–754
Mean, 658
Mean absolute deviation, 1026
Mean critical path, 489
Mean leaving rate, 850
Mean square error, 1026
Measures of forecast uncertainty, 1035–1036
Medical team distribution, 542–547
Merit Brass Company, 1010
Metaheuristics, 605
Method of Lagrange multipliers, 1167
Method of least squares, 1030–1033
Method of successive approximations, 1070,

1075–1077
Microcomputers, 431
Microsoft Corporation, 162
Microsoft Excel, 5–6
Microsoft Project, 468, 472–474, 487, 1158
Midpoint rule, 671
Minimax criterion, 732, 734–735
Minimax theorem, 734
Minimization technique, 703–706
Minimum cost flow problem, 61, 66, 350, 391,

405, 406, 601
applications, 429–431
and assignment problem, 435
description of, 429
distribution network problem, 433–434
example, 433–434
final comments on, 437
formulation, 431–434
special cases

maximum flow problem, 436–437
shortest-path method, 436
transportation problem, 435
transshipment problem, 435–436

using Excel, 434–435
Minimum cover, 629
Minimum ratio test, 120–121, 125
Minimum spanning tree problem, 410, 415–420

algorithm, 417–418
applications, 416–417
applying algorithm, 418–420

Mixed congruential method, 1103–1105
Mixed integer programming, 40, 576, 589, 590,

594, 601–602

Mixed integer programming—Cont.
branch-and-bound algorithm, 616–622
example, 619–622
summary of, 618

M/M/1 queueing theory model, 1092–1096
M/M/s queueing theory model, 852–860
Model, 355
Model enrichment, 12
Model for evaluating technology alternatives,

1100
Modeling languages, 73–74, 78–89, 162
Modeling system, 6
Model validation, 3, 12, 17–18, 65, 161
Modified simplex method for quadratic

programming, 684, 686–689
Money, utility functions, 771–773
Monsanto Corporation, 4, 12–13
Monte Carlo techniques, 1126–1127
Most favorable value, 34
Most likely estimate, 486
Moving-average forecasting, 1017
MPL/CPLEX, 31, 163, 579–580, 689–690,

1157–1158
MPL software, 6, 73, 76–78, 163, 702
Multiechelon inventory systems, 984–985
Multiperiod inventory models

with batch orders and no setup cost, 982
with setup cost, 981–982
without setup cost, 980
variation, 980–981

Multiple optimal solutions, 35
Multiple-server case, 863, 956–858
Multiple servers, 853
Multiplicative congruential method, 1105
Multiproduct inventory systems, 983
Multivariable unconstrained optimization,

673–679
Mutually exclusive alternatives, 578, 579, 583,

588, 601

Naive forecasting model, 1016
National Forest Administration, 780
National Weather Service, 780
Natural language financial planning, 63
Nearly optimal solution, 615–616
Negative right-hand sides, 136–137
Net flow, 414
Net flow constraints, 60–61
Net present value, 577, 1123–1126
Network design, 420
Network optimization models, 405–449

cases, 458–468
conclusions, 448–449
maximum flow problem, 420–429
minimum cost flow problem, 429–438

Network optimization models—Cont.
minimum spanning tree problem, 410, 415–420
prototype example, 406–407
shortest-path problem, 411–415
terminology for, 407–410

Network representation, 351–354, 384–385
Networks, 350, 539

components of, 408
definition, 407
to display projects, 470–474

Network simplex method, 391, 406, 410, 413,
429, 435, 438–449

correspondence between BF solution and
feasible spanning tree, 439–440

entering basic variable, 441–444
fundamental theorem, 440
leaving basic variable and next BF solution,

444–448
optimality test, 447–448
and upper bound technique, 438–439

New England Electric System, 780
New Haven Health Department, 4, 10
Newsboy problem, 962, 1002–1004,

1116–1118
Newsvendor problem, 962n
New York City, 924–925, 1098
Next-event incrementing, 1095–1096, 1132
No backlogging, 939
Node constraints, 432, 434, 439
Nodes, 407–408

decision tree, 765
No feasible solution, 34, 148–149, 607
No leaving basic variable, 129–130
Nonbasic arcs, 439–440
Nonbasic variables, 116, 118, 120, 124, 199,

204, 245
changes in coefficients of, 252, 269–273

Nonconvex programming, 668
search procedures, 702–703
sequential unconstrained minimization

technique, 703–706
Noncooperative game, 742
Nonlinear costs, 975
Nonlinear programming, 40, 322, 653–706

cases, 720–735
convexity in, 1159
convex programming, 697–702
graphical illustration, 659–664
Karush-Kuhn-Tucker conditions for

constrained optimization, 679–683
multivariable unconstrained optimization,

673–679
nonconvex programming, 702–706
one-variable unconstrained optimization,

670–673
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Nonlinear programming—Cont.
quadratic programming, 683–690
sample applications

portfolio selection, 658–659
product-mix problem, 655–656
transportation problem, 656–568

separable programming, 690–697
types of problems, 664–670

complementarity problem, 669–670
convex programming, 667
fractional programming, 668–669
geometric programming, 668
linearly constrained optimization, 665
nonconvex programming, 668
quadratic programming, 665–667
separable programming, 667
unconstrained optimization, 665, 667

Nonnegative artificial variable, 134
Nonnegative variables, 120
Nonnegativity constraints, 33, 60–61, 114–115,

116, 318, 667
Nonpreemptive goal programming, 333–335
Nonpreemptive priorities, 880, 881–882
Nonsingular matrix, 1173
Nonzero-sum game, 742
No optimal solutions, 35
Nori and Leets Company, 50–52, 160, 590
Normal cost, 494
Normal distribution, 490, 1108–1109
Northwest corner rule, 369–370

compared to other criteria, 373
n-person game, 742
NPV; see Net present value
n-step transition probabilities, 804, 808–810
Null matrix, 1171
Null vector, 203, 1172
Numerical instability, 705

Objective function, 11, 13, 33, 75
deterministic dynamic programming, 541–542
gradient, 322
simultaneous changes in coefficients, 273

Objectives, 8–10
Odds and evens game, 726
Oglethorpe Power Corporation, 781
Ohio Edison Company, 780
OMEGA, 20
One-dimensional search procedure, 670–673,

698
100 percent rule

for changes in objective function
coefficients, 273

for changes in right-hand sides, 267–268
One-variable unconstrained optimization,

670–673

Open DataBase Connectivity, 87, 89
Operations research

algorithms, 5–6
applications, 4
data gathering, 7–10
impact of, 3–5
mathematical models, 10–20
nature of, 2–3
OR Courseware, 5–6
origins of, 1–2
phases of study, 7
problem definition, 7–10
role of simulation, 1085–1086

OPL Studio, 162
Optimal basic feasible solution, 131
Optimality

condition for, 246
necessary and sufficient conditions, 679
principle of, 540, 549

Optimality test, 111–112, 609
BF solution, 122–123
duality theory, 235
mixed integer programming, 618
network simplex method, 447–448
in sensitivity analysis, 261
simplex method, 125
transportation simplex method, 375–376

Optimal mixed strategy, 737
Optimal policy, 539–540

for inventory, 953, 969–971
Markov decision processes, 1059–1064
policy improvement algorithm, 1070–1073

Optimal policy decision, 540
Optimal production schedule, 953, 956
Optimal service level, 967
Optimal solution, 3, 14, 30, 34, 539

and CPF solutions, 195–198
for dual problem, 235
multiple, 130–132
related to corner-point feasible solution,

35–36
separable programming, 696
simplex method, 122–123, 127–128

OptiMax 2000, 73, 163
Optimistic estimate, 486
Optimization methods; see Classical

optimization methods
Optimization Subroutine Library, 623
Optimizer, 19, 21
Optimizer system, 984–985
OR Courseware, 5–6, 30–31, 123, 262, 468,

1156–1158
Ordering cost, 937, 964
Order quantity, 958
Order-quantity policy, 957

Organizational complexity, 1–2
Origin, 113
Original form of the model, 118
OR/MS Today, 1098
OR Tutor, 5, 28, 30, 115, 123, 163, 262
Overall measure of performance, 12, 31
Overhead costs, 495
Owners, 9

P and T Company problem, 351–355
Panels of experts, 1014
Parameters of a model, 11, 13, 32, 255, 355
Parameter table, 355–356
Parametric linear programming, 159–160, 309,

312–317
in sensitivity analysis, 280–284
systematic changes in b1 parameters,

315–317
systematic changes in Cj parameters,

313–315
Parametric programming, 659
Partial autocorrelation, 1027
Partially crashing an activity, 493–494
Parts Inventory Management System, 19
Patent protection, 402n
Path, 408
Payoff, 751
Payoff table

in decision analysis, 751
solving simple games with, 728–733
and strategies, 726–727, 728–729

Penalty function method, 697
Penalty points, 334
Penalty weights, 333
Perfect information, 762–763
Periodicity properties, 812
Periodic review, 940–941
Periodic review inventory models, 951–956
Period of a state, 812
Perishable products, 961–975
Personnel scheduling, 57–59, 63–65
PERT; see Program evaluation and review

technique
PERT three-estimate approach, 486–487, 1098,

1118, 1120–1121
Pessimistic estimate, 486
Petroleum industry, case, 65–67
Phase-type distributions, 879
Phillips Petroleum, 781
Piecewise linear function, 316, 609–691, 656,

696–697
PIMS; see Parts Inventory Management System
Pivot column, 125
Pivot number, 126
Pivot row, 126
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Planning, 24
Point estimate, 1135
Poisson distribution, 803, 805, 845–846
Poisson input process, 846, 858, 871, 872,

876–878, 880, 886
Poisson process, 836, 846, 886

independent, 887–888
Policy decision, 539
Policy improvement algorithm, 1070–1073
Pollaczek-Khintchine formula, 872, 873, 875
Polygon, 193
Polyhedron, 193–194
Polynomial time algorithm, 165–166
Ponderosa Industrial, 62–63
Portfolio selection with risky securities, 658–659
Positive semidefinite matrix, 684
Posterior probabilities, 758–762, 767
Postoptimality analysis, 14, 15, 67, 109

and interior-point approach, 166, 167
for linear programming, 152
parametric linear programming, 159–160
reoptimization, 152–153
sensitivity analysis, 156–159
shadow prices, 153–156

Postoptimality tasks, 219
Posynomials, 668
Precedence diagramming method, 511
Prediction interval, 1034–1036
Preemptive goal programming, 333, 335–339

more than two priority levels, 339
sequential procedure, 336–338
streamlined procedure, 338–339

Preemptive priorities, 880, 882–885
Preimplementation test, 18
Premium Solver, 69, 162, 163
Price demand curve, 655
Price elasticity, 655
Primal, 230
Primal-dual relationships, 230

complementary basic solutions, 242–245,
312n

between complementary basic solutions,
245–247

complementary optimal basic solution,
245–246, 253–254

complementary optimal solutions, 237
complementary slackness property, 243–244
complementary solutions property, 236–237,

238
corresponding forms, 250
duality theorem, 238
strong duality property, 236, 238
summary of, 236–238
symmetry property, 237, 248
weak duality property, 236, 238

Primal-dual table, 231–233
Primal feasible solution, 246–247, 309–310
Primal problem, 231–232, 683

adapting to other primal forms, 247–252
complementary basic solutions, 243

Principle of optimality, 540, 549, 1075
Prior distribution, 752
Priority classes, 880
Priority-discipline queueing models, 879–885

County Hospital example, 883–885
description, 879–881
nonpreemptive priorities, 880
preemptive priorities, 880
results for nonpreemptive priorities, 881–882
results for preemptive priorities, 882–883
single-server variations, 882

Prior probabilities, 752, 767
Probabilistic dynamic programming, 562–568,

1070
decision tree, 562–563
reject allowances problem, 563–565
winning in Las Vegas, 565–567

Probability density function, 842
Probability distribution, 562, 1060, 1102

generation of random numbers from,
1105–1110

for project duration, 488–490, 501
Probability of absorption, 820–821
Probability theory, definition of expected value,

734
Probability tree diagram, 760
Problem definition, 7–10
Processing facilities, 430
Procter and Gamble, 4, 354
Product form solution, 886
Production and distribution network, 581–582
Production cost, 939
Production rates, 25–26
Production schedule

master, 950
optimal, 953, 956

Production yield forecasts, 1011
Product mix, 26

case, 62–63
in nonlinear program, 655–656
problem, 74

Products
dependent-demand, 949
perishable, 961–975
stable, 961, 975–983

Product splitting, 387
Profit curves, 609–691, 694
Profit function, 38, 39, 656
Profit maximization, 8, 25–26
Profit per batch produced, 26, 34

Program evaluation and review technique,
468–513, 1111

cases, 524–532
computer use, 509
dealing with overlapping activities, 511
evaluation of, 508–512
future of, 512
means and variances of activity durations,

509–510
probability of meeting deadline, 510–511
for project costs, 502–508
project scheduling, 475–485
resource allocation, 511–512
in simulation model, 1118–1122
uses, 468
value of, 508–509

Programming, 24
Programming languages, 1112–1113
Project costs

controlling, 502, 506–508
scheduling, 502–506

Project deadline, 1098, 1118–1122
Project duration, 475

probability distribution, 488–490, 501
simplifying approximations, 487–490

Projected gradient, 323–325
Projection matrix, 323
Project management

cases, 524–532
earliest start time, 477–482
earliest finish time, 477–482
evaluation of PERT/CPM, 508–512
with MS Project, 472–474
network visual display, 470–474
PERT/CPM for, 468–469
prototype example, 469–470
scheduling and controlling costs, 502–508
scheduling with PERT/CPM, 475–485
time-cost trade-offs, 491, 492–502
uncertain activity durations, 485–492

meeting deadline, 491
PERT three-estimate approach, 486–487
simplifying approximations, 487–490

Project management software, 468, 509
Project network, 471–472
Project scheduling

critical path, 475–476
identifying slack, 482–485
individual activities, 477–482
review of, 485

Proof by contradiction, 195–196
Proper form of the Gaussian elimination, 118
Proportionality

analysis, 62
assumption, 36–40, 548
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Proportionality—Cont.
violating, 594–598

Pseudo-random numbers, 1103
Pure strategies, 733

Quadratic approximation method, 697–698
Quadratic programming, 162, 665–667, 683–690

Korush-Kuhn-Tucker conditions, 685–686
modified simplex method, 684, 686–689
software options, 689–690

Quality constraint, in primal problem, 248–249
Quality Stores, 583
Quantity discounts, 946–947
Quasi-Newton method, 702
Queue discipline, 835, 836
Queueing models, 834–835
Queueing simulation, 1096
Queueing Simulator, 1131
Queueing systems, 834, 835

design and operation of, 1097–1098
design decisions, 909

Queueing theory, 64, 834–890
applications

award-winning, 923–926
conclusions, 926
decision making, 909–911
decision models, 917–923
examples, 907–909
waiting-cost functions, 912–917

basic structure of models
basic queueing process, 835
calling population, 835–836
elementary queueing process, 837–839
input source, 835–836
interarrival time, 836
queue, 836
queue discipline, 836
relationships between L, W, Lq, and Wq,

840
service mechanism, 837
terminology and notation, 839–840

birth and death process models, 849–866
case, 905–906, 932–934
conclusions on, 889–890
examples of real systems

commercial service, 840–841
internal service, 841
social service, 841
transportation service, 841

hyperexponential distribution, 878–879
models without Poisson input, 876–878
nonexponential distribution models

Erlang distribution and, 873–875
M/D/s model, 872–873
M/Ek/s model, 873–876

Queueing theory—Cont.
nonexponential distribution models—Cont.

M/G/1 model, 871–872
phase-type distributions, 879
Poisson input process, 846
Poisson process, 846
Pollaczek-Khintchine formula, 872, 873, 875
priority-discipline queueing models, 879–885
product form solution, 886
prototype example, 835
queue discipline, 835
queueing networks, 885–889

equivalence property, 886
infinite queues in series, 886–887
Jackson networks, 887–889

role of exponential distribution, 841–848
service mechanism, 835
and simulation, 1131–1138
simulation example, 1092–1096
time advance methods

fixed-time incrementing, 1093–1095
next-event incrementing, 1095–1096

Queue length, 839
Queues, 834, 836

Radiation therapy, example, 44–46, 137–148
Rand Corporation, 1101
Randomized policies, 1060–1061
Random number integer, 1102
Random numbers

characteristics, 1102–1103
congruential methods for generating

additive method, 1105
mixed congruential method, 1103–1105
multiplicative method, 1105

and cycle length, 1104
generation of, 1101–1105, 1102
variance-reducing techniques, 1129

Random numbers table, 1101
Random observations, generation of

acceptance-rejection method, 1109–1110
chi-square distribution, 1108–1109
Erlang distributions, 1107–1108
exponential distribution, 1107–1108
inverse transformation method, 1106–1107
normal distribution, 1108–1109
simple discrete distribution, 1105–1106

Random variables, 43, 823–825
Rank of a matrix, 1172–1173
Rank of a set of vectors, 1172
Rate in � rate out principle, 850–852
Ratio formula, 1135
Real arcs, 439
Recipient cells, 377
Recurrence time, 818–820

Recurrent state, 811–812
Recurring branching variables, 617
Recursive equation, 1064
Recursive relationship, 540, 549, 561
Reduced costs, 170, 272
Redundant constraint, 59, 624–626
Refinery LP system, 65
Regeneration point, 1132, 1134
Regenerative method

application of formula, 1136–1138
innovative approach, 1131–1135
of statistical analysis, 1131
statistical formula, 1135–1136

Regional planning, example, 46–49
Regression analysis, 1009, 1028–1036
Regression line, 1032
Reject allowance, 1011
Reject allowances problem, 563–565
Relaxation

Lagrangian, 613
LP, 601–603, 606

Reoptimization, 609
in sensitivity analysis, 261
technique, 152–153

Reorder point, 948, 957, 958–960
Replicability, 21
Requirements assumption, 355
Residual capacities, 422
Residual network, 422
Resource allocation, 511–512
Restricted-entry rule, 687–688
Retrospective test, 17
Revenue, 939–940
Revenue management, 963
Reverse arcs, 438, 439
Revised simplex method, 160, 190, 202–212

general observations, 211–212
matrix form of current set of equations,

206–208
overall procedure, 208–211
solving for a basic feasible solution, 204–206
summary of, 208–211

Reynolds Metals Company, 583, 1099
Right-hand sides, simultaneous changes in,

267–278
Rijkswaterstaat, 4, 13, 16, 18, 21
Risk analysis, 1123
Risk-averse individual, 772, 776
Risk-neutral individuals, 772
Risk profile, 1100, 1123, 1126
Risk seekers, 772
RiskSim, 1115
Risk tolerance, 776
Rotatables Allocation and Planning System,

1011
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Rounding up, 59
Row rank of a matrix, 1172–1173
Row vector, 1171
(R,Q) inventory policy, 957, 982, 985
Russell’s approximation method, 371, 373

compared to other criteria, 374

SABRE reservation system, 584
Saddle point, 732
Safety stock, 959
Sales force composite forecasting, 1014
Sales forecasting, 1010
Salvage cost, 940
Salvage value, 940, 963
Sample covariance, 1135
Sample size of one, 1016
Sample standard deviation, 1090
Sample variances, 1135
Sampling proportion, 1128
Sampling weight, 1128
San Francisco Police Department, 4, 9, 576
Santa Clara University, 780
Satisficing, 14
Save-It Company, 53–57
Scarce goods, 155
Scenarios, 16
School assignment, case, 307–308
Scientific inventory management, 935–936
Scientist distribution problem, 549–552
SDM system, 65–66
Seasonal effects time series, 1016, 1018–1021

example, 1019–1020
general procedure, 1020–1021
seasonally adjusted, 1020

Seasonal factor, 1019
Seed, 1103
Seervada Park problem, 412–413, 418–420,

424–428, 436
Sensible-odd-bizarre method; see SOB method
Sensitive parameters, 15, 156, 244
Sensitivity analysis, 11, 15, 16, 43, 62, 778–779

applying
changes in bi parameter, 262–268
changes in coefficients of basic variables,

274–278
changes in coefficients of nonbasic

variables, 269–273
introduction of a new variable, 273–274,

278–279
simultaneous changes in right-hand sides,

267–278
Bayes’ decision rule, 755–758
cases

air pollution control, 302–304
school assignments, 307–308

Sensitivity analysis—Cont.
and duality theory, 230
essence of, 254–262
need for, 255
parametric programming, 280–284
role of duality theory

changes in coefficients of nonbasic
variables, 252

introduction of a new variable, 253–254
other applications, 254

in simplex method, 156–159
summary of procedures, 261–262
using Excel Solver, 157–159

Sensitivity report, 157
Separable function, 667
Separable programming, 667

extensions, 696–697
key property of, 693–694, 696
reformulation as linear programming

problem, 692–696
Sequence of distinct acts, 408
Sequence of interrelated decisions, 539
Sequential-approximation algorithms,

697–698
Sequential procedure for preemptive goal

programming, 336–338
Sequential quadratic approximation methods,

702
Sequential unconstrained algorithms, 697
Sequential unconstrained minimization

technique, 703–706
Serial correlation, 1105
Servers, 837, 838

multiple, 853
Service completions, 1093
Service facilities, 837
Service industries, 1012, 1100
Service jobs, 834
Service level, 966–967
Service mechanism, 835, 837
Service times, 837, 838

probability distribution, 841
Set covering problems, 599–600, 601
Set partitioning problems, 600
Setup cost, 937, 957, 972–975
7-Eleven stores, 65
Shadow prices, 153–156, 219, 683
Shape parameter, 873
Shipment dispatching, 582–583
Shortage cost, 937, 939, 964
Shortages, planned, 943–946
Shortest-path problem, 406, 534n, 601

algorithm for, 411–412
applying the algorithm, 412–413
and minimum cost flow problem, 436

Shortest-path problem—Cont.
other applications, 415
using Excel, 413–414

Simple discrete distribution, 1105–1106
Simplex method, 2, 25, 30, 109–172,

1062–1063; see also Dual simplex
method; Network simplex method;
Revised simplex method; Transportation
simplex method

adaptation to other model forms, 132–152
algebra of

determining direction of movement, 120
determining where to stop, 120–121
initialization, 118
iteration 2 and optimal solution, 122–123
optimality of, 118–119
optimality test, 122
solving for the new BF solution, 121–122

Big M method, 134–136
cases

AmeriBank, 185–187
fabrics/fall fashions, 182–185
school assignment, 188–189

compared to dual simplex method, 309–310
computer implementation, 160–163
dual problem in, 238
economic interpretations, 241–242
essence of, 109–114

key solution concept, 112–114
solving the example, 111–112

foundations of, 190–202
adjacent CPF solutions, 193–195
extensions to the augmented form, 198–202
properties of CPF solutions, 195–198
terminology, 190–193

fundamental insight, 212–220
geometric and algebraic interpretations, 119
interior-point algorithm, 163–168
postoptimality analysis

parametric linear programming, 159–160
reoptimization, 152–153
sensitivity analysis, 156–159
shadow prices, 153–156

revised, 160
setting up, 114–118
tabular form, 123–128

initialization, 125
iteration, 125–126
optimality test, 125
resulting optimal solution, 127–128

tie-breaking in
entering basic variable, 128–129
leaving basic variable, 129
multiple optimal solutions, 130–132
no leaving variable, 129–130

SUBJECT INDEX 1211



Simplex tableau, 124, 126, 127, 141
Simulated annealing, 605
Simulation, 1084–1140

applications/examples
coin-flipping game, 1087–1091
construction company problem,

1118–1122
distribution systems, 1099
financial risk analysis, 1099–1100,

1122–1126
health care, 1100
inventory management, 1098, 1116–1118
manufacturing systems, 1099
meeting deadlines, 1098
M/M/1 queueing system, 1092–1096
queueing systems, 1097–1098
service industries, 1100

cases, 1151–1155
conclusions, 1138–1140
cycles, 1132
essence of, 1084–1097

continuous simulation, 1086
discrete event, 1086
role in operations research, 1085–1086

generation of random numbers, 1101–1105
generation of random observations,

1105–1110
length of a cycle, 1132
outline of major study, 1110–1115

checking accuracy, 1112
data collection, 1111–1112
formulation of problem, 1111
model formulation, 1111–1112
plan simulations, 1114
presenting recommendations, 1115
run and analysis, 1114–1115
selection of software, 1112–1113
testing model validity, 1113–1114

queueing simulation, 1096
regeneration point, 1132
regenerative method of statistical analysis,

1131–1138
on spreadsheets, 1115–1126
technique and uses, 1084
time advance methods

fixed-time incrementing, 1093–1095
next-event incrementing, 1095–1096

variance-reducing techniques, 1126–1130
Simulation clock, 1091–1092
Simulation model, 1085
Simultaneous solution, 192
Simultaneous solution of constraint boundary

equations, 195
Simultaneous tolerance levels, 1035–1036
Single-period probabilistic model, 962n

Single-period stochastic model, 962n
Single-server case, 854–856, 861–862, 865
Single-server queueing system, 1133–1134
Singular matrix, 1173
Sink, 421
Site selection problem, 581
Skewed distribution, 1090
Slack

for an activity, 484
and critical path, 484–485
in functional constraints, 559
identifying, 482–485
zero, 484

Slack variables, 114–115, 198–199, 212
Slope-intercept form, 29
Slope of the profit function, 38
Smoothing constant, 1017
SOB method, 249–252
Social service, 841
Solid waste disposal, example, 53–57
Solid waste management, 430
Solutions of the model, 33–36
Solution tree, 606, 608
Solved nodes, 411–412
Solvers, 78
Sources, 354, 421, 430
South African National Defense Force, 4, 581
Southern Confederation of Kibbutzim, 46–49
Southern Electric, 780
Southland Corporation, 65, 67
Soviet Union, 347
Spanning tree, 410, 434

feasible, 439–440
Spanning tree solution, 440
Spare parts needs, 1010–1011
Special restriction, 692–693
Spreadsheets, 15

for linear programming, 67–72
with LINGO, 86–87
for simulation, 1112–1113, 1115–1126
software, 161–163
transportation problems, 358–365

Square matrix, 1171
(s,S) inventory policy, 973–974
Stable products, 961, 975–983
Stable solution, 732
Staffing needs forecasting, 1012–1013
Stages, 539
Stakeholders, 9
Start-time constraints, 499
Startup costs, 51
State of nature, 751
States, 539, 802
State system, 839
State transition formula, 1092

State vector, 560
Stationary policy, 1057, 1059
Stationary probabilities, 813
Stationary transition probabilities, 803–804,

823
Statistical analysis, 1131–1138
Statistical forecasting methods, 1009, 1037

applications, 1013
Statistical formula, 1135–1136
Steady-state condition, 839, 849
Steady-state equation, 813–814, 825–826
Steady-state probabilities, 825–826, 1055
Steady-state properties, 812–813
Stochastic inventory models, 936

continuous review, 956–961
choosing order quantity Q, 958
choosing reorder point R, 958–960
example, 961
model assumptions, 957–958
service level measures, 958–959

nonlinear costs, 975
periodic review, 975–983

multiperiod models, 980–982
two-period model with no setup cost,

976–980
single-period for perishable products,

961–975
analysis, 965–967
application, 967–968
assumptions, 965
example, 963–965
exponential demand distribution, 974–

975
with initial stock level, 968–972
nonlinear costs, 971–972
with no setup cost, 1116
with setup cost, 972–975
types of products, 962–963

Stochastic processes, 802
Stockholders, 9
Stockout, 943
Storage cost, 939
Strategies

dominated, 729–731
game theory, 726–728
minimax criterion, 732, 734–735
mixed, 733–735
optimal mixed, 737
and payoff table, 726–727, 728–729
pure, 733
stable solution, 732

Stratified sampling, 1127–1129
Streamlined algorithms, 350
Streamlined procedure for preemptive goal

programming, 338–339
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Strictly concave function
of several variables, 1162–1163
of single variable, 1159–1161

Strictly convex function, 975
of several variables, 1162–1163
of single variable, 1159–1161

Strong duality property, 236, 238, 683, 740
Structural constraints, 33
Submatrices, 1171
Sum of squares, 1031
Superoptimal basic solution, 254
Superoptimal solution, 261
Suppliers, 9
Supply, 354
Supply, distribution, and marketing planning,

case, 65–67
Supply chain, 985, 1098
Supply chain management, 985–986
Supply node, 410
Surplus stock, 1004–1008
Surplus variables, 139, 234
Symmetry property, 237, 248
SYSNET, 19
Systems Optimization Laboratory, Stanford

University, 706

Table lookup approach, 1107
Tables, 1174–1175
Tabular form of simplex method, 123–128
Tabu research, 604
Taco Bell, 4
Tasks, 381
Team approach, 3, 8
Telecommunications transmission systems, 834
Testing, 12
Texaco, 4, 20
Texas Stadium, 583
Tie breaking, 128–132
Tightening constraints, 626–622
Time advance methods

fixed-time incrementing, 1093–1095, 1132
next-event incrementing, 1095–1096, 1132

Time-cost graph, 493
Time-cost trade-offs, 491, 492–502

conclusions on, 501–502
crashing activities, 494–496
for individual activities, 493–494
linear programming for, 496–501

Time series, 1009, 1014–1016
Box-Jenkins model, 1026–1028
case, 1048–1052
constant-level model, 1016–1018
exponential smoothing for linear trend,

1021–1025

Time series—Cont.
more than one time period ahead, 1025
seasonal effects, 1018–1021

Time value of money, 1069–1070
Tomco Oil Company, 780
Tornado diagrams, 779
Torricelli Act, 347
Total function value, 42
Total variable cost, 948
Toyota Motor Company, 950
Transient condition, 839, 849
Transient state, 811–812
Transition intensities, 824
Transition matrix, 804–805, 809–810, 812
Transition probabilities, 803–804, 823, 1053,

1056
Transition rates, 824–825, 826–828
Transportation problem, 350–381, 601

award-winning application, 354
case, 401–402
jet engine production, 359–362
and minimum cost flow problem, 435
model, 354–357
network representation, 351–354
in nonlinear programming, 656–658
prototype example, 351–364
terminology for, 354–355
using Excel, 358–365
water supply problem, 362–365, 370–373

Transportation service, 841
Transportation simplex method, 350–351, 365

initialization, 368–374
northwest corner rule, 369–370
Russell’s approximation, 371, 373
Vogel’s approximation, 370–371

iteration for, 376–379
optimality test, 375–376
setting up, 365–367
summary, 379–381

Transportation simplex tableau, 367–368, 374,
376, 378

Transpose operation, 1170
Transshipment nodes, 410, 421
Transshipment problem, 391, 435–436
Tree, 410
TreePlan, 769–770, 776
Trend factor, 1022
Trend smoothing constant, 1023
Triangular distribution, 1120–1121
Turkish Petroleum Refineries Corporation, 581
Two-bin inventory system, 956
Two-period stochastic inventory model,

976–980
Two-person, zero-sum game, 742

and decision analysis, 751

Two-person, zero-sum game—Cont.
formulation of, 726–729
simple game formulation, 728–729

Two-phase method, 142–148, 686–687
Two-segment piecewise linear functions, 697
Two-sided goal, 333
Two-variable problem, 675, 676–677

Unbounded Z, 35, 129–130
Uncapacitated minimum cost flow problems,

439
Uncertainty

choice in face of, 751
and decision analysis, 749

Unconditional state probabilities, 810
Unconstrained optimization, 665

and convex programming, 667
multivariable, 673–679
one-variable, 670–673
several variables, 1166
single variable, 1165–1166

Undirected arc, 408, 413, 422–423
Undirected network, 408
Undirected path, 409
Unemployment insurance econometric

forecasting model, 1012
Uniform random number, 1092, 1102
Union Airways, 57–59
United Airlines, 4, 63–65, 67, 924, 1012
United States Department of Defense, 780
United States Postal Service, 780, 1100
Unit holding cost, 963
Unit production cost, 937
Unsatisfied demand, 964
Unsatisfied demand cost, 939
Unsolved nodes, 411–412
Unstable solution, 733
Unused demand capacity, 364
Upper, one-sided goal, 333
Upper bound, 196–197
Upper bound constraints, 60–61, 317–318
Upper bound technique, 78, 309

in linear programming, 317–320
in network simplex method, 438–439

User acceptance test, 21, 985
User team, 18, 21
Utility functions for money, 771–773
Utility theory

applying, 773–775
approach for estimating payoff, 775–776
exponential utility function, 776
fundamental property, 772
using decision analysis, 776–778
utility functions for money, 771–773

Utilization factor, 839
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Value
of experimentation, 762–763
of perfect information, 762–764

Value determination, 1065
Value of the game, 731
Variable metric method, 702
Variance, 658
Variance-reducing techniques, 1126–1130

complementary random numbers, 1129
conclusions on, 1130
Monte Carlo techniques, 1126–1127
stratified sampling, 1127–1129

Vector of basic variables, 204
Vectors, 1171–1172
Vehicles, 834
Vogel’s approximation method, 370, 371

compared to other criteria, 373–374
Volume discounts, 656

Waiting-cost functions, 912–917
g(N) form, 912–914
h(°W) form, 914–915
linear, 913

Waiting-in-line situation; see Queueing theory
Waiting time in the queue, 855
Warm-up period, 1095
Wasted iteration, 386
Water resource distribution, 362–365, 370–373
Weak duality property, 236, 238
Weighted average, 130
Weighted set covering problem, 599n
What-if questions, 20, 62–63
Winter Simulation Conference, 1101
World Bank, 584
Worldwide Inventory Network Optimizer, 986
Worst-case performance, 165–166
Worst case scenario, 487

Wyndor Glass Company problem, 25–44, 68,
109–112, 118, 119, 124–135, 150–151,
156–158, 164–165, 200–202, 205–206,
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