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Game Theory

Life is full of conflict and competition. Numerous examples involving adversaries in con-
flict include parlor games, military battles, political campaigns, advertising and market-
ing campaigns by competing business firms, and so forth. A basic feature in many of these
situations is that the final outcome depends primarily upon the combination of strategies
selected by the adversaries. Game theory is a mathematical theory that deals with the gen-
eral features of competitive situations like these in a formal, abstract way. It places par-
ticular emphasis on the decision-making processes of the adversaries.

As briefly surveyed in Sec. 14.6, research on game theory continues to delve into
rather complicated types of competitive situations. However, the focus in this chapter is
on the simplest case, called two-person, zero-sum games. As the name implies, these
games involve only two adversaries or players (who may be armies, teams, firms, and so
on). They are called zero-sum games because one player wins whatever the other one
loses, so that the sum of their net winnings is zero.

Section 14.1 introduces the basic model for two-person, zero-sum games, and the next
four sections describe and illustrate different approaches to solving such games. The chap-
ter concludes by mentioning some other kinds of competitive situations that are dealt with
by other branches of game theory.

To illustrate the basic characteristics of two-person, zero-sum games, consider the game
called odds and evens. This game consists simply of each player simultaneously showing
either one finger or two fingers. If the number of fingers matches, so that the total number
for both players is even, then the player taking evens (say, player 1) wins the bet (say, $1)
from the player taking odds (player 2). If the number does not match, player 1 pays $1 to
player 2. Thus, each player has two strategies: to show either one finger or two fingers.
The resulting payoff to player 1 in dollars is shown in the payoff table given in Table 14.1.

In general, a two-person game is characterized by

1. The strategies of player 1
2. The strategies of player 2
3. The payoff table
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Before the game begins, each player knows the strategies she or he has available, the ones
the opponent has available, and the payoff table. The actual play of the game consists of
each player simultaneously choosing a strategy without knowing the opponent’s choice.

A strategy may involve only a simple action, such as showing a certain number of
fingers in the odds and evens game. On the other hand, in more complicated games in-
volving a series of moves, a strategy is a predetermined rule that specifies completely
how one intends to respond to each possible circumstance at each stage of the game. For
example, a strategy for one side in chess would indicate how to make the next move for
every possible position on the board, so the total number of possible strategies would be
astronomical. Applications of game theory normally involve far less complicated com-
petitive situations than chess does, but the strategies involved can be fairly complex.

The payoff table shows the gain (positive or negative) for player 1 that would result
from each combination of strategies for the two players. It is given only for player 1 be-
cause the table for player 2 is just the negative of this one, due to the zero-sum nature of
the game.

The entries in the payoff table may be in any units desired, such as dollars, provided
that they accurately represent the utility to player 1 of the corresponding outcome. How-
ever, utility is not necessarily proportional to the amount of money (or any other com-
modity) when large quantities are involved. For example, $2 million (after taxes) is prob-
ably worth much less than twice as much as $1 million to a poor person. In other words,
given the choice between (1) a 50 percent chance of receiving $2 million rather than noth-
ing and (2) being sure of getting $1 million, a poor person probably would much prefer
the latter. On the other hand, the outcome corresponding to an entry of 2 in a payoff table
should be “worth twice as much” to player 1 as the outcome corresponding to an entry
of 1. Thus, given the choice, he or she should be indifferent between a 50 percent chance
of receiving the former outcome (rather than nothing) and definitely receiving the latter
outcome instead.1

A primary objective of game theory is the development of rational criteria for se-
lecting a strategy. Two key assumptions are made:

1. Both players are rational.
2. Both players choose their strategies solely to promote their own welfare (no compas-

sion for the opponent).
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TABLE 14.1 Payoff table for 
the odds and 
evens game

Player 2

Strategy 1 2

Player 1
1 1 �1
2 �1 1

1See Sec. 15.5 for a further discussion of the concept of utility.



Game theory contrasts with decision analysis (see Chap. 15), where the assumption
is that the decision maker is playing a game with a passive opponent—nature—which
chooses its strategies in some random fashion.

We shall develop the standard game theory criteria for choosing strategies by means
of illustrative examples. In particular, the next section presents a prototype example that
illustrates the formulation of a two-person, zero-sum game and its solution in some sim-
ple situations. A more complicated variation of this game is then carried into Sec. 14.3 to
develop a more general criterion. Sections 14.4 and 14.5 describe a graphical procedure
and a linear programming formulation for solving such games.
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1We use only his or only her in some examples and problems for ease of reading: we do not mean to imply that
only men or only women are engaged in the various activities.

Two politicians are running against each other for the U.S. Senate. Campaign plans must
now be made for the final 2 days, which are expected to be crucial because of the close-
ness of the race. Therefore, both politicians want to spend these days campaigning in two
key cities, Bigtown and Megalopolis. To avoid wasting campaign time, they plan to travel
at night and spend either 1 full day in each city or 2 full days in just one of the cities.
However, since the necessary arrangements must be made in advance, neither politician
will learn his (or her)1 opponent’s campaign schedule until after he has finalized his own.
Therefore, each politician has asked his campaign manager in each of these cities to as-
sess what the impact would be (in terms of votes won or lost) from the various possible
combinations of days spent there by himself and by his opponent. He then wishes to use
this information to choose his best strategy on how to use these 2 days.

Formulation as a Two-Person, Zero-Sum Game

To formulate this problem as a two-person, zero-sum game, we must identify the two play-
ers (obviously the two politicians), the strategies for each player, and the payoff table.

As the problem has been stated, each player has the following three strategies:

Strategy 1 � spend 1 day in each city.
Strategy 2 � spend both days in Bigtown.
Strategy 3 � spend both days in Megalopolis.

By contrast, the strategies would be more complicated in a different situation where
each politician learns where his opponent will spend the first day before he finalizes his
own plans for his second day. In that case, a typical strategy would be: Spend the first
day in Bigtown; if the opponent also spends the first day in Bigtown, then spend the sec-
ond day in Bigtown; however, if the opponent spends the first day in Megalopolis, then
spend the second day in Megalopolis. There would be eight such strategies, one for each
combination of the two first-day choices, the opponent’s two first-day choices, and the
two second-day choices.

Each entry in the payoff table for player 1 represents the utility to player 1 (or the
negative utility to player 2) of the outcome resulting from the corresponding strategies
used by the two players. From the politician’s viewpoint, the objective is to win votes,
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and each additional vote (before he learns the outcome of the election) is of equal value
to him. Therefore, the appropriate entries for the payoff table for politician 1 are the to-
tal net votes won from the opponent (i.e., the sum of the net vote changes in the two cities)
resulting from these 2 days of campaigning. Using units of 1,000 votes, this formulation
is summarized in Table 14.2. Game theory assumes that both players are using the same
formulation (including the same payoffs for player 1) for choosing their strategies.

However, we should also point out that this payoff table would not be appropriate if
additional information were available to the politicians. In particular, assume that they
know exactly how the populace is planning to vote 2 days before the election, so that each
politician knows exactly how many net votes (positive or negative) he needs to switch in
his favor during the last 2 days of campaigning to win the election. Consequently, the only
significance of the data prescribed by Table 14.2 would be to indicate which politician
would win the election with each combination of strategies. Because the ultimate goal is
to win the election and because the size of the plurality is relatively inconsequential, the
utility entries in the table then should be some positive constant (say, �1) when politi-
cian 1 wins and �1 when he loses. Even if only a probability of winning can be deter-
mined for each combination of strategies, the appropriate entries would be the probabil-
ity of winning minus the probability of losing because they then would represent expected
utilities. However, sufficiently accurate data to make such determinations usually are not
available, so this example uses the thousands of total net votes won by politician 1 as the
entries in the payoff table.

Using the form given in Table 14.2, we give three alternative sets of data for the pay-
off table to illustrate how to solve three different kinds of games.

Variation 1 of the Example

Given that Table 14.3 is the payoff table for player 1 (politician 1), which strategy should
each player select?

This situation is a rather special one, where the answer can be obtained just by ap-
plying the concept of dominated strategies to rule out a succession of inferior strategies
until only one choice remains.
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TABLE 14.2 Form of the payoff table for 
politician 1 for the political 
campaign problem

Total Net Votes Won
by Politician 1

(in Units of 1,000 Votes)

Politician 2

Strategy 1 2 3

1
Politician 1 2

3



A strategy is dominated by a second strategy if the second strategy is always at least as
good (and sometimes better) regardless of what the opponent does. A dominated strategy
can be eliminated immediately from further consideration.

At the outset, Table 14.3 includes no dominated strategies for player 2. However, for
player 1, strategy 3 is dominated by strategy 1 because the latter has larger payoffs 
(1 � 0, 2 � 1, 4 � �1) regardless of what player 2 does. Eliminating strategy 3 from fur-
ther consideration yields the following reduced payoff table:
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TABLE 14.3 Payoff table for player 1 
for variation 1 of the 
political campaign 
problem

Player 2

Strategy 1 2 3

1 1 2 4
Player 1 2 1 0 5

3 0 1 �1

Because both players are assumed to be rational, player 2 also can deduce that player
1 has only these two strategies remaining under consideration. Therefore, player 2 now
does have a dominated strategy—strategy 3, which is dominated by both strategies 1 and
2 because they always have smaller losses for player 2 (payoffs to player 1) in this re-
duced payoff table (for strategy 1: 1 � 4, 1 � 5; for strategy 2: 2 � 4, 0 � 5). Eliminat-
ing this strategy yields

At this point, strategy 2 for player 1 becomes dominated by strategy 1 because the
latter is better in column 2 (2 � 0) and equally good in column 1 (1 � 1). Eliminating
the dominated strategy leads to

1 2 3

1 1 2 4
2 1 0 5

1 2

1 1 2
2 1 0

1 2

1 1 2

Strategy 2 for player 2 now is dominated by strategy 1 (1 � 2), so strategy 2 should be
eliminated.



Consequently, both players should select their strategy 1. Player 1 then will receive
a payoff of 1 from player 2 (that is, politician 1 will gain 1,000 votes from politician 2).

In general, the payoff to player 1 when both players play optimally is referred to as
the value of the game. A game that has a value of 0 is said to be a fair game. Since this
particular game has a value of 1, it is not a fair game.

The concept of a dominated strategy is a very useful one for reducing the size of the
payoff table that needs to be considered and, in unusual cases like this one, actually iden-
tifying the optimal solution for the game. However, most games require another approach
to at least finish solving, as illustrated by the next two variations of the example.

Variation 2 of the Example

Now suppose that the current data give Table 14.4 as the payoff table for player 1 (politi-
cian 1). This game does not have dominated strategies, so it is not obvious what the play-
ers should do. What line of reasoning does game theory say they should use?

Consider player 1. By selecting strategy 1, he could win 6 or could lose as much as
3. However, because player 2 is rational and thus will seek a strategy that will protect
himself from large payoffs to player 1, it seems likely that player 1 would incur a loss by
playing strategy 1. Similarly, by selecting strategy 3, player 1 could win 5, but more prob-
ably his rational opponent would avoid this loss and instead administer a loss to player 1
which could be as large as 4. On the other hand, if player 1 selects strategy 2, he is guar-
anteed not to lose anything and he could even win something. Therefore, because it pro-
vides the best guarantee (a payoff of 0), strategy 2 seems to be a “rational” choice for
player 1 against his rational opponent. (This line of reasoning assumes that both players
are averse to risking larger losses than necessary, in contrast to those individuals who en-
joy gambling for a large payoff against long odds.)

Now consider player 2. He could lose as much as 5 or 6 by using strategy 1 or 3, but
is guaranteed at least breaking even with strategy 2. Therefore, by the same reasoning of
seeking the best guarantee against a rational opponent, his apparent choice is strategy 2.

If both players choose their strategy 2, the result is that both break even. Thus, in this
case, neither player improves upon his best guarantee, but both also are forcing the op-
ponent into the same position. Even when the opponent deduces a player’s strategy, the
opponent cannot exploit this information to improve his position. Stalemate.
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TABLE 14.4 Payoff table for player 1 for variation 2 of the political campaign
problem

Player 2

Strategy 1 2 3 Minimum

1 �3 �2 �6 �3
Player 1 2 �2 �0 �2 �0 ← Maximin value

3 �5 �2 �4 �4

Maximum: 5 �0 �6
↑
Minimax value



The end product of this line of reasoning is that each player should play in such a
way as to minimize his maximum losses whenever the resulting choice of strategy cannot
be exploited by the opponent to then improve his position. This so-called minimax cri-
terion is a standard criterion proposed by game theory for selecting a strategy. In effect,
this criterion says to select a strategy that would be best even if the selection were being
announced to the opponent before the opponent chooses a strategy. In terms of the pay-
off table, it implies that player 1 should select the strategy whose minimum payoff is
largest, whereas player 2 should choose the one whose maximum payoff to player 1 is the
smallest. This criterion is illustrated in Table 14.4, where strategy 2 is identified as the
maximin strategy for player 1 and strategy 2 is the minimax strategy for player 2. The re-
sulting payoff of 0 is the value of the game, so this is a fair game.

Notice the interesting fact that the same entry in this payoff table yields both the max-
imin and minimax values. The reason is that this entry is both the minimum in its row
and the maximum of its column. The position of any such entry is called a saddle point.

The fact that this game possesses a saddle point was actually crucial in determining
how it should be played. Because of the saddle point, neither player can take advantage
of the opponent’s strategy to improve his own position. In particular, when player 2 pre-
dicts or learns that player 1 is using strategy 2, player 2 would incur a loss instead of
breaking even if he were to change from his original plan of using his strategy 2. Simi-
larly, player 1 would only worsen his position if he were to change his plan. Thus, nei-
ther player has any motive to consider changing strategies, either to take advantage of his
opponent or to prevent the opponent from taking advantage of him. Therefore, since this
is a stable solution (also called an equilibrium solution), players 1 and 2 should exclu-
sively use their maximin and minimax strategies, respectively.

As the next variation illustrates, some games do not possess a saddle point, in which
case a more complicated analysis is required.

Variation 3 of the Example

Late developments in the campaign result in the final payoff table for player 1 (politician 1)
given by Table 14.5. How should this game be played?

Suppose that both players attempt to apply the minimax criterion in the same way as
in variation 2. Player 1 can guarantee that he will lose no more than 2 by playing strategy
1. Similarly, player 2 can guarantee that he will lose no more than 2 by playing strategy 3.
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TABLE 14.5 Payoff table for player 1 for variation 3 of the political campaign
problem

Player 2

Strategy 1 2 3 Minimum

1 �0 �2 �2 �2
Player 1 2 �5 �4 �3 �3

← Maximin value

3 �2 �3 �4 �4

Maximum: 5 �4 �2
↑
Minimax value



However, notice that the maximin value (�2) and the minimax value (2) do not co-
incide in this case. The result is that there is no saddle point.

What are the resulting consequences if both players plan to use the strategies just de-
rived? It can be seen that player 1 would win 2 from player 2, which would make player
2 unhappy. Because player 2 is rational and can therefore foresee this outcome, he would
then conclude that he can do much better, actually winning 2 rather than losing 2, by play-
ing strategy 2 instead. Because player 1 is also rational, he would anticipate this switch
and conclude that he can improve considerably, from �2 to 4, by changing to strategy 2.
Realizing this, player 2 would then consider switching back to strategy 3 to convert a loss
of 4 to a gain of 3. This possibility of a switch would cause player 1 to consider again
using strategy 1, after which the whole cycle would start over again. Therefore, even
though this game is being played only once, any tentative choice of a strategy leaves that
player with a motive to consider changing strategies, either to take advantage of his op-
ponent or to prevent the opponent from taking advantage of him.

In short, the originally suggested solution (player 1 to play strategy 1 and player 2 to
play strategy 3) is an unstable solution, so it is necessary to develop a more satisfactory
solution. But what kind of solution should it be?

The key fact seems to be that whenever one player’s strategy is predictable, the op-
ponent can take advantage of this information to improve his position. Therefore, an es-
sential feature of a rational plan for playing a game such as this one is that neither player
should be able to deduce which strategy the other will use. Hence, in this case, rather than
applying some known criterion for determining a single strategy that will definitely be
used, it is necessary to choose among alternative acceptable strategies on some kind of
random basis. By doing this, neither player knows in advance which of his own strategies
will be used, let alone what his opponent will do.

This suggests, in very general terms, the kind of approach that is required for games
lacking a saddle point. In the next section we discuss the approach more fully. Given this
foundation, the following two sections will develop procedures for finding an optimal way
of playing such games. This particular variation of the political campaign problem will
continue to be used to illustrate these ideas as they are developed.
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Whenever a game does not possess a saddle point, game theory advises each player to as-
sign a probability distribution over her set of strategies. To express this mathematically, let

xi � probability that player 1 will use strategy i (i � 1, 2, . . . , m),
yj � probability that player 2 will use strategy j ( j � 1, 2, . . . , n),

where m and n are the respective numbers of available strategies. Thus, player 1 would
specify her plan for playing the game by assigning values to x1, x2, . . . , xm. Because these
values are probabilities, they would need to be nonnegative and add to 1. Similarly, the
plan for player 2 would be described by the values she assigns to her decision variables
y1, y2, . . . , yn. These plans (x1, x2, . . . , xm) and (y1, y2, . . . , yn) are usually referred to
as mixed strategies, and the original strategies are then called pure strategies.

When the game is actually played, it is necessary for each player to use one of her
pure strategies. However, this pure strategy would be chosen by using some random de-
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vice to obtain a random observation from the probability distribution specified by the mixed
strategy, where this observation would indicate which particular pure strategy to use.

To illustrate, suppose that players 1 and 2 in variation 3 of the political campaign prob-
lem (see Table 14.5) select the mixed strategies (x1, x2, x3) � (�

1
2

�, �
1
2

�, 0) and (y1, y2, y3) �
(0, �

1
2

�, �
1
2

�), respectively. This selection would say that player 1 is giving an equal chance (prob-
ability of �

1
2

�) of choosing either (pure) strategy 1 or 2, but he is discarding strategy 3 en-
tirely. Similarly, player 2 is randomly choosing between his last two pure strategies. To
play the game, each player could then flip a coin to determine which of his two accept-
able pure strategies he will actually use.

Although no completely satisfactory measure of performance is available for evalu-
ating mixed strategies, a very useful one is the expected payoff. By applying the proba-
bility theory definition of expected value, this quantity is

Expected payoff for player 1 � �
m

i�1
�
n

j�1
pijxiyj,

where pij is the payoff if player 1 uses pure strategy i and player 2 uses pure strategy j. In
the example of mixed strategies just given, there are four possible payoffs (�2, 2, 4, �3),
each occurring with a probability of �

1
4

�, so the expected payoff is �
1
4

�(�2 � 2 � 4 � 3) � �
1
4

�.
Thus, this measure of performance does not disclose anything about the risks involved in
playing the game, but it does indicate what the average payoff will tend to be if the game
is played many times.

By using this measure, game theory extends the concept of the minimax criterion to
games that lack a saddle point and thus need mixed strategies. In this context, the minimax
criterion says that a given player should select the mixed strategy that minimizes the max-
imum expected loss to himself. Equivalently, when we focus on payoffs (player 1) rather
than losses (player 2), this criterion says to maximin instead, i.e., maximize the minimum ex-
pected payoff to the player. By the minimum expected payoff we mean the smallest possi-
ble expected payoff that can result from any mixed strategy with which the opponent can
counter. Thus, the mixed strategy for player 1 that is optimal according to this criterion is
the one that provides the guarantee (minimum expected payoff) that is best (maximal). (The
value of this best guarantee is the maximin value, denoted by v

�
.) Similarly, the optimal strat-

egy for player 2 is the one that provides the best guarantee, where best now means mini-
mal and guarantee refers to the maximum expected loss that can be administered by any of
the opponent’s mixed strategies. (This best guarantee is the minimax value, denoted by v�.)

Recall that when only pure strategies were used, games not having a saddle point
turned out to be unstable (no stable solutions). The reason was essentially that v

�
� v�, so

that the players would want to change their strategies to improve their positions. Simi-
larly, for games with mixed strategies, it is necessary that v

�
� v� for the optimal solution

to be stable. Fortunately, according to the minimax theorem of game theory, this condi-
tion always holds for such games.

Minimax theorem: If mixed strategies are allowed, the pair of mixed strategies
that is optimal according to the minimax criterion provides a stable solution with
v
�

� v� � v (the value of the game), so that neither player can do better by uni-
laterally changing her or his strategy.

One proof of this theorem is included in Sec. 14.5.
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Although the concept of mixed strategies becomes quite intuitive if the game is played
repeatedly, it requires some interpretation when the game is to be played just once. In this
case, using a mixed strategy still involves selecting and using one pure strategy (randomly
selected from the specified probability distribution), so it might seem more sensible to ig-
nore this randomization process and just choose the one “best” pure strategy to be used.
However, we have already illustrated for variation 3 in the preceding section that a player
must not allow the opponent to deduce what his strategy will be (i.e., the solution proce-
dure under the rules of game theory must not definitely identify which pure strategy will
be used when the game is unstable). Furthermore, even if the opponent is able to use only
his knowledge of the tendencies of the first player to deduce probabilities (for the pure
strategy chosen) that are different from those for the optimal mixed strategy, then the op-
ponent still can take advantage of this knowledge to reduce the expected payoff to the
first player. Therefore, the only way to guarantee attaining the optimal expected payoff v
is to randomly select the pure strategy to be used from the probability distribution for the
optimal mixed strategy. (Valid statistical procedures for making such a random selection
are discussed in Sec. 22.4.)

Now we need to show how to find the optimal mixed strategy for each player. There
are several methods of doing this. One is a graphical procedure that may be used when-
ever one of the players has only two (undominated) pure strategies; this approach is de-
scribed in the next section. When larger games are involved, the usual method is to trans-
form the problem to a linear programming problem that then can be solved by the simplex
method on a computer; Sec. 14.5 discusses this approach.
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Consider any game with mixed strategies such that, after dominated strategies are elimi-
nated, one of the players has only two pure strategies. To be specific, let this player be
player 1. Because her mixed strategies are (x1, x2) and x2 � 1 � x1, it is necessary for her
to solve only for the optimal value of x1. However, it is straightforward to plot the ex-
pected payoff as a function of x1 for each of her opponent’s pure strategies. This graph
can then be used to identify the point that maximizes the minimum expected payoff. The
opponent’s minimax mixed strategy can also be identified from the graph.

To illustrate this procedure, consider variation 3 of the political campaign problem
(see Table 14.5). Notice that the third pure strategy for player 1 is dominated by her sec-
ond, so the payoff table can be reduced to the form given in Table 14.6. Therefore, for
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TABLE 14.6 Reduced payoff table for player 1 for variation 3 of the political
campaign problem

Player 2

Probability y1 y2 y3

Pure
Probability Strategy 1 2 3

x1 1 0 �2 �2
Player 1

1 � x1 2 5 �4 �3



Now plot these expected-payoff lines on a graph, as shown in Fig. 14.1. For any given
values of x1 and (y1, y2, y3), the expected payoff will be the appropriate weighted aver-
age of the corresponding points on these three lines. In particular,

Expected payoff for player 1 � y1(5 � 5x1) � y2(4 � 6x1) � y3(�3 � 5x1).

Remember that player 2 wants to minimize this expected payoff for player 1. Given x1,
player 2 can minimize this expected payoff by choosing the pure strategy that corresponds
to the “bottom” line for that x1 in Fig. 14.1 (either �3 � 5x1 or 4 � 6x1, but never 
5 � 5x1). According to the minimax (or maximin) criterion, player 1 wants to maximize
this minimum expected payoff. Consequently, player 1 should select the value of x1 where
the bottom line peaks, i.e., where the (�3 � 5x1) and (4 � 6x1) lines intersect, which
yields an expected payoff of

v
�

� v � max {min{�3 � 5x1, 4 � 6x1}}.
0�x1�1

To solve algebraically for this optimal value of x1 at the intersection of the two lines 
�3 � 5x1 and 4 � 6x1, we set

�3 � 5x1 � 4 � 6x1,
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FIGURE 14.1
Graphical procedure for
solving games

each of the pure strategies available to player 2, the expected payoff for player 1 will be

(y1, y2, y3) Expected Payoff

(1, 0, 0) 0x1 � 5(1 � x1) � 5 � 5x1

(0, 1, 0) �2x1 � 4(1 � x1) � 4 � 6x1

(0, 0, 1) 2x1 � 3(1 � x1) � �3 � 5x1



which yields x1 � �
1
7
1
�. Thus, (x1, x2) � (�

1
7
1
�, �

1
4
1
�) is the optimal mixed strategy for player 1, and

v
�

� v � �3 � 5��
1
7
1
�� � �

1
2
1
�

is the value of the game.
To find the corresponding optimal mixed strategy for player 2, we now reason as fol-

lows. According to the definition of the minimax value v� and the minimax theorem, the
expected payoff resulting from the optimal strategy (y1, y2, y3) � (y*1, y*2, y*3) will satisfy
the condition

y*1(5 � 5x1) � y*2(4 � 6x1) � y*3(�3 � 5x1) � v� � v � �
1
2
1
�

for all values of x1 (0 � x1 � 1). Furthermore, when player 1 is playing optimally (that
is, x1 � �

1
7
1
�), this inequality will be an equality (by the minimax theorem), so that

�
2
1
0
1
�y*1 � �

1
2
1
�y*2 � �

1
2
1
�y*3 � v � �

1
2
1
�.

Because (y1, y2, y3) is a probability distribution, it is also known that

y*1 � y*2 � y*3 � 1.

Therefore, y*1 � 0 because y*1 � 0 would violate the next-to-last equation; i.e., the ex-
pected payoff on the graph at x1 � �

1
7
1
� would be above the maximin point. (In general, any

line that does not pass through the maximin point must be given a zero weight to avoid
increasing the expected payoff above this point.)

Hence,

y*2 (4 � 6x1) � y*3 (�3 � 5x1) 

But y*2 and y*3 are numbers, so the left-hand side is the equation of a straight line, which
is a fixed weighted average of the two “bottom” lines on the graph. Because the ordinate
of this line must equal �

1
2
1
� at x1 � �

1
7
1
�, and because it must never exceed �

1
2
1
�, the line neces-

sarily is horizontal. (This conclusion is always true unless the optimal value of x1 is ei-
ther 0 or 1, in which case player 2 also should use a single pure strategy.) Therefore,

y*2(4 � 6x1) � y*3(�3 � 5x1) � �
1
2
1
�, for 0 � x1 � 1.

Hence, to solve for y*2 and y*3, select two values of x1 (say, 0 and 1), and solve the re-
sulting two simultaneous equations. Thus,

�4y*2 � 3y*3 � �
1
2
1
�,

�2y*2 � 2y*3 � �
1
2
1
�,

which has a simultaneous solution of y*2 � �
1
5
1
� and y*3 � �

1
6
1
�. Therefore, the optimal mixed

strategy for player 2 is (y1, y2, y3) � (0, �
1
5
1
�, �

1
6
1
�).

for 0 � x1 � 1,

for x1 � �
1
7
1
�.

� �
1
2
1
�

� �
1
2
1
�
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If, in another problem, there should happen to be more than two lines passing through
the maximin point, so that more than two of the y*j values can be greater than zero, this con-
dition would imply that there are many ties for the optimal mixed strategy for player 2. One
such strategy can then be identified by setting all but two of these y*j values equal to zero
and solving for the remaining two in the manner just described. For the remaining two, the
associated lines must have positive slope in one case and negative slope in the other.

Although this graphical procedure has been illustrated for only one particular prob-
lem, essentially the same reasoning can be used to solve any game with mixed strategies
that has only two undominated pure strategies for one of the players.
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Any game with mixed strategies can be solved by transforming the problem to a linear
programming problem. As you will see, this transformation requires little more than ap-
plying the minimax theorem and using the definitions of the maximin value v

�
and mini-

max value v�.
First, consider how to find the optimal mixed strategy for player 1. As indicated in

Sec. 14.3,

Expected payoff for player 1 � �
m

i�1
�
n

j�1
pijxiyj

and the strategy (x1, x2, . . . , xm) is optimal if

�
m

i�1
�
n

j�1
pijxiyj 	 v

�
� v

for all opposing strategies (y1, y2, . . . , yn). Thus, this inequality will need to hold, e.g.,
for each of the pure strategies of player 2, that is, for each of the strategies (y1, y2, . . . ,
yn) where one yj � 1 and the rest equal 0. Substituting these values into the inequality
yields

�
m

i�1
pijxi 	 v for j � 1, 2, . . . , n,

so that the inequality implies this set of n inequalities. Furthermore, this set of n inequalities
implies the original inequality (rewritten)

�
n

j�1
yj��

m

i�1
pijxi� 	 �

n

j�1
yjv � v,

since

�
n

j�1
yj � 1.

Because the implication goes in both directions, it follows that imposing this set of n lin-
ear inequalities is equivalent to requiring the original inequality to hold for all strategies
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(y1, y2, . . . , yn). But these n inequalities are legitimate linear programming constraints,
as are the additional constraints

x1 � x2 � 


 � xm � 1
xi 	 0, for i � 1, 2, . . . , m

that are required to ensure that the xi are probabilities. Therefore, any solution (x1, x2, . . . ,
xm) that satisfies this entire set of linear programming constraints is the desired optimal
mixed strategy.

Consequently, the problem of finding an optimal mixed strategy has been reduced to
finding a feasible solution for a linear programming problem, which can be done as de-
scribed in Chap. 4. The two remaining difficulties are that (1) v is unknown and (2) the
linear programming problem has no objective function. Fortunately, both these difficul-
ties can be resolved at one stroke by replacing the unknown constant v by the variable
xm�1 and then maximizing xm�1, so that xm�1 automatically will equal v (by definition)
at the optimal solution for the linear programming problem!

To summarize, player 1 would find his optimal mixed strategy by using the simplex
method to solve the linear programming problem:

Maximize xm�1,

subject to

p11x1 � p21x2 � 


 � pm1xm � xm�1 	 0
p12x1 � p22x2 � 


 � pm2xm � xm�1 	 0




















































p1nx1 � p2nx2 � 


 � pmnxm � xm�1 	 0

x1 � x2 � 


 � xm � 1

and

xi 	 0, for i � 1, 2, . . . , m.

Note that xm�1 is not restricted to be nonnegative, whereas the simplex method can be
applied only after all the variables have nonnegativity constraints. However, this matter
can be easily rectified, as will be discussed shortly.

Now consider player 2. He could find his optimal mixed strategy by rewriting the
payoff table as the payoff to himself rather than to player 1 and then by proceeding ex-
actly as just described. However, it is enlightening to summarize his formulation in terms
of the original payoff table. By proceeding in a way that is completely analogous to that
just described, player 2 would conclude that his optimal mixed strategy is given by an op-
timal solution to the linear programming problem:

Minimize yn�1,

subject to

p11y1 � p12y2 � 


 � p1nyn � yn�1 � 0
p21y1 � p22y2 � 


 � p2nyn � yn�1 � 0





















































pm1y1 � pm2y2 � 


 � pmnyn � yn�1 � 0

y1 � y2 � 


 � yn � 1
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and

yj 	 0, for j � 1, 2, . . . , n.

It is easy to show (see Prob. 14.5-5 and its hint) that this linear programming problem and
the one given for player 1 are dual to each other in the sense described in Secs. 6.1 and 6.4.
This fact has several important implications. One implication is that the optimal mixed strate-
gies for both players can be found by solving only one of the linear programming problems
because the optimal dual solution is an automatic by-product of the simplex method calcu-
lations to find the optimal primal solution. A second implication is that this brings all du-
ality theory (described in Chap. 6) to bear upon the interpretation and analysis of games.

A related implication is that this provides a simple proof of the minimax theorem.
Let x*m�1 and y*n�1 denote the value of xm�1 and yn�1 in the optimal solution of the re-
spective linear programming problems. It is known from the strong duality property given
in Sec. 6.1 that �x*m�1 � �y*n�1, so that x*m�1 � y*n�1. However, it is evident from the
definition of v

�
and v� that v

�
� x*m�1 and v� � y*n�1, so it follows that v

�
� v�, as claimed by

the minimax theorem.
One remaining loose end needs to be tied up, namely, what to do about xm�1 and yn�1

being unrestricted in sign in the linear programming formulations. If it is clear that v 	 0 so
that the optimal values of xm�1 and yn�1 are nonnegative, then it is safe to introduce non-
negativity constraints for these variables for the purpose of applying the simplex method.
However, if v � 0, then an adjustment needs to be made. One possibility is to use the ap-
proach described in Sec. 4.6 for replacing a variable without a nonnegativity constraint by
the difference of two nonnegative variables. Another is to reverse players 1 and 2 so that the
payoff table would be rewritten as the payoff to the original player 2, which would make the
corresponding value of v positive. A third, and the most commonly used, procedure is to add
a sufficiently large fixed constant to all the entries in the payoff table that the new value of
the game will be positive. (For example, setting this constant equal to the absolute value of
the largest negative entry will suffice.) Because this same constant is added to every entry,
this adjustment cannot alter the optimal mixed strategies in any way, so they can now be ob-
tained in the usual manner. The indicated value of the game would be increased by the amount
of the constant, but this value can be readjusted after the solution has been obtained.

To illustrate this linear programming approach, consider again variation 3 of the po-
litical campaign problem after dominated strategy 3 for player 1 is eliminated (see Table
14.6). Because there are some negative entries in the reduced payoff table, it is unclear at
the outset whether the value of the game v is nonnegative (it turns out to be). For the mo-
ment, let us assume that v 	 0 and proceed without making any of the adjustments dis-
cussed in the preceding paragraph.

To write out the linear programming model for player 1 for this example, note that
pij in the general model is the entry in row i and column j of Table 14.6, for i � 1, 2 and
j � 1, 2, 3. The resulting model is

Maximize x3,

subject to

5x2 � x3 	 0
�2x1 � 4x2 � x3 	 0
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2x1 � 3x2 � x3 	 0
x1 � x2 � 1

and

x1 	 0, x2 	 0.

Applying the simplex method to this linear programming problem (after adding the
constraint x3 	 0) yields x*1 � �

1
7
1
�, x*2 � �

1
4
1
�, x*3 � �

1
2
1
� as the optimal solution. (See Probs. 14.5-7

and 14.5-8.) Consequently, just as was found by the graphical procedure in the preceding
section, the optimal mixed strategy for player 1 according to the minimax criterion is (x1,
x2) � (�

1
7
1
�, �

1
4
1
�), and the value of the game is v � x*3 � �

1
2
1
�. The simplex method also yields

the optimal solution for the dual (given next) of this problem, namely, y*1 � 0, y*2 � �
1
5
1
�,

y*3 � �
1
6
1
�, y*4 � �

1
2
1
�, so the optimal mixed strategy for player 2 is (y1, y2, y3) � (0, �

1
5
1
�, �

1
6
1
�).

The dual of the preceding problem is just the linear programming model for player
2 (the one with variables y1, y2, . . . , yn, yn�1) shown earlier in this section. (See Prob.
14.5-6.) By plugging in the values of pij from Table 14.6, this model is

Minimize y4,

subject to

� 2y2 � 2y3 � y4 � 0
5y1 � 4y2 � 3y3 � y4 � 0
y1 � y2 � y3 � 1

and

y1 	 0, y2 	 0, y3 	 0.

Applying the simplex method directly to this model (after adding the constraint y4 	 0)
yields the optimal solution: y*1 � 0, y*2 � �

1
5
1
�, y*3 � �

1
6
1
�, y*4 � �

1
2
1
� (as well as the optimal dual

solution x*1 � �
1
7
1
�, x*2 � �

1
4
1
�, x*3 � �

1
2
1
�). Thus, the optimal mixed strategy for player 2 is (y1,

y2, y3) � (0, �
1
5
1
�, �

1
6
1
�), and the value of the game is again seen to be v � y*4 � �

1
2
1
�.

Because we already had found the optimal mixed strategy for player 2 while dealing
with the first model, we did not have to solve the second one. In general, you always can
find optimal mixed strategies for both players by choosing just one of the models (either
one) and then using the simplex method to solve for both an optimal solution and an op-
timal dual solution.

When the simplex method was applied to both of these linear programming models,
a nonnegativity constraint was added that assumed that v 	 0. If this assumption were vi-
olated, both models would have no feasible solutions, so the simplex method would stop
quickly with this message. To avoid this risk, we could have added a positive constant,
say, 3 (the absolute value of the largest negative entry), to all the entries in Table 14.6.
This then would increase by 3 all the coefficients of x1, x2, y1, y2, and y3 in the inequal-
ity constraints of the two models. (See Prob. 14.5-1.)
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Although this chapter has considered only two-person, zero-sum games with a finite num-
ber of pure strategies, game theory extends far beyond this kind of game. In fact, exten-
sive research has been done on a number of more complicated types of games, including
the ones summarized in this section.
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The simplest generalization is to the two-person, constant-sum game. In this case, the
sum of the payoffs to the two players is a fixed constant (positive or negative) regardless
of which combination of strategies is selected. The only difference from a two-person,
zero-sum game is that, in the latter case, the constant must be zero. A nonzero constant
may arise instead because, in addition to one player winning whatever the other one loses,
the two players may share some reward (if the constant is positive) or some cost (if the
constant is negative) for participating in the game. Adding this fixed constant does noth-
ing to affect which strategies should be chosen. Therefore, the analysis for determining
optimal strategies is exactly the same as described in this chapter for two-person, zero-
sum games.

A more complicated extension is to the n-person game, where more than two play-
ers may participate in the game. This generalization is particularly important because, in
many kinds of competitive situations, frequently more than two competitors are involved.
This may occur, e.g., in competition among business firms, in international diplomacy,
and so forth. Unfortunately, the existing theory for such games is less satisfactory than it
is for two-person games.

Another generalization is the nonzero-sum game, where the sum of the payoffs to the
players need not be 0 (or any other fixed constant). This case reflects the fact that many
competitive situations include noncompetitive aspects that contribute to the mutual ad-
vantage or mutual disadvantage of the players. For example, the advertising strategies of
competing companies can affect not only how they will split the market but also the to-
tal size of the market for their competing products. However, in contrast to a constant-
sum game, the size of the mutual gain (or loss) for the players depends on the combina-
tion of strategies chosen.

Because mutual gain is possible, nonzero-sum games are further classified in terms
of the degree to which the players are permitted to cooperate. At one extreme is the non-
cooperative game, where there is no preplay communication between the players. At the
other extreme is the cooperative game, where preplay discussions and binding agreements
are permitted. For example, competitive situations involving trade regulations between
countries, or collective bargaining between labor and management, might be formulated
as cooperative games. When there are more than two players, cooperative games also al-
low some of or all the players to form coalitions.

Still another extension is to the class of infinite games, where the players have an in-
finite number of pure strategies available to them. These games are designed for the kind
of situation where the strategy to be selected can be represented by a continuous decision
variable. For example, this decision variable might be the time at which to take a certain
action, or the proportion of one’s resources to allocate to a certain activity, in a competi-
tive situation.

However, the analysis required in these extensions beyond the two-person, zero-sum,
finite game is relatively complex and will not be pursued further here.
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The general problem of how to make decisions in a competitive environment is a very
common and important one. The fundamental contribution of game theory is that it pro-
vides a basic conceptual framework for formulating and analyzing such problems in sim-
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ple situations. However, there is a considerable gap between what the theory can handle
and the complexity of most competitive situations arising in practice. Therefore, the con-
ceptual tools of game theory usually play just a supplementary role in dealing with these
situations.

Because of the importance of the general problem, research is continuing with some
success to extend the theory to more complex situations.
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LEARNING AIDS IN YOUR OR COURSEWARE FOR THIS CHAPTER

The symbol to the left of some of the problems (or their parts) has
the following meaning.

C: Use the computer with any of the software options available to
you (or as instructed by your instructor) to solve the problem.

An asterisk on the problem number indicates that at least a partial
answer is given in the back of the book.

14.1-1. The labor union and management of a particular com-
pany have been negotiating a new labor contract. However, ne-
gotiations have now come to an impasse, with management mak-
ing a “final” offer of a wage increase of $1.10 per hour and the
union making a “final” demand of a $1.60 per hour increase.

Therefore, both sides have agreed to let an impartial arbitrator
set the wage increase somewhere between $1.10 and $1.60 per
hour (inclusively).

The arbitrator has asked each side to submit to her a confi-
dential proposal for a fair and economically reasonable wage in-
crease (rounded to the nearest dime). From past experience, both
sides know that this arbitrator normally accepts the proposal of the
side that gives the most from its final figure. If neither side changes
its final figure, or if they both give in the same amount, then the
arbitrator normally compromises halfway between ($1.35 in this
case). Each side now needs to determine what wage increase to
propose for its own maximum advantage.

Formulate this problem as a two-person, zero-sum game.
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14.2-1. Reconsider Prob. 14.1-1.
(a) Use the concept of dominated strategies to determine the best

strategy for each side.
(b) Without eliminating dominated strategies, use the minimax cri-

terion to determine the best strategy for each side.

14.2-2.* For each of the following payoff tables, determine the op-
timal strategy for each player by successively eliminating dominated
strategies. (Indicate the order in which you eliminated strategies.)

14.1-2. Two manufacturers currently are competing for sales in
two different but equally profitable product lines. In both cases the
sales volume for manufacturer 2 is three times as large as that for
manufacturer 1. Because of a recent technological breakthrough,
both manufacturers will be making a major improvement in both
products. However, they are uncertain as to what development and
marketing strategy to follow.

If both product improvements are developed simultaneously,
either manufacturer can have them ready for sale in 12 months.
Another alternative is to have a “crash program” to develop only
one product first to try to get it marketed ahead of the competi-
tion. By doing this, manufacturer 2 could have one product ready
for sale in 9 months, whereas manufacturer 1 would require 10
months (because of previous commitments for its production fa-
cilities). For either manufacturer, the second product could then be
ready for sale in an additional 9 months.

For either product line, if both manufacturers market their im-
proved models simultaneously, it is estimated that manufacturer 1
would increase its share of the total future sales of this product by
8 percent of the total (from 25 to 33 percent). Similarly, manufac-
turer 1 would increase its share by 20, 30, and 40 percent of the
total if it marketed the product sooner than manufacturer 2 by 2,
6, and 8 months, respectively. On the other hand, manufacturer 1
would lose 4, 10, 12, and 14 percent of the total if manufacturer 2
marketed it sooner by 1, 3, 7, and 10 months, respectively.

Formulate this problem as a two-person, zero-sum game, and
then determine which strategy the respective manufacturers should
use according to the minimax criterion.

14.1-3. Consider the following parlor game to be played between
two players. Each player begins with three chips: one red, one
white, and one blue. Each chip can be used only once.

To begin, each player selects one of her chips and places it
on the table, concealed. Both players then uncover the chips and
determine the payoff to the winning player. In particular, if both
players play the same kind of chip, it is a draw; otherwise, the fol-
lowing table indicates the winner and how much she receives from
the other player. Next, each player selects one of her two remain-
ing chips and repeats the procedure, resulting in another payoff ac-
cording to the following table. Finally, each player plays her one
remaining chip, resulting in the third and final payoff.
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Winning Chip Payoff ($)

Red beats white 50
White beats blue 40
Blue beats red 30
Matching colors 0

Formulate this problem as a two-person, zero-sum game by iden-
tifying the form of the strategies and payoffs.

14.2-3. Consider the game having the following payoff table.

Player 2

Strategy 1 2 3

1 �3 1 �2
Player 1 2 �1 2 �1

3 �1 0 �2

Player 2

Strategy 1 2 3

1 1 �2 �0
Player 1 2 2 �3 �2

3 0 �3 �1

Player 2

Strategy 1 2 3 4

1 �2 �3 �1 1
Player 1 2 �1 �1 �2 2

3 �1 �2 �1 3

Determine the optimal strategy for each player by successively
eliminating dominated strategies. Give a list of the dominated
strategies (and the corresponding dominating strategies) in the or-
der in which you were able to eliminate them.

14.2-4. Find the saddle point for the game having the following
payoff table.

Player 2

Strategy 1 2 3

1 �1 �1 1
Player 1 2 �2 �0 3

3 �3 �1 2

(a)

(b)



14.2-7.* Two politicians soon will be starting their campaigns
against each other for a certain political office. Each must now se-
lect the main issue she will emphasize as the theme of her cam-
paign. Each has three advantageous issues from which to choose,
but the relative effectiveness of each one would depend upon the
issue chosen by the opponent. In particular, the estimated increase
in the vote for politician 1 (expressed as a percentage of the total
vote) resulting from each combination of issues is as follows:

Use the minimax criterion to find the best strategy for each player.
Does this game have a saddle point? Is it a stable game?

14.2-5. Find the saddle point for the game having the following
payoff table.
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Use the minimax criterion to find the best strategy for each player.
Does this game have a saddle point? Is it a stable game?

14.2-6. Two companies share the bulk of the market for a partic-
ular kind of product. Each is now planning its new marketing plans
for the next year in an attempt to wrest some sales away from the
other company. (The total sales for the product are relatively fixed,
so one company can increase its sales only by winning them away
from the other.) Each company is considering three possibilities:
(1) better packaging of the product, (2) increased advertising, and
(3) a slight reduction in price. The costs of the three alternatives
are quite comparable and sufficiently large that each company will
select just one. The estimated effect of each combination of alter-
natives on the increased percentage of the sales for company 1 is
as follows:

Each company must make its selection before learning the deci-
sion of the other company.
(a) Without eliminating dominated strategies, use the minimax (or

maximin) criterion to determine the best strategy for each
company.

(b) Now identify and eliminate dominated strategies as far as pos-
sible. Make a list of the dominated strategies, showing the or-
der in which you were able to eliminate them. Then show the
resulting reduced payoff table with no remaining dominated
strategies.

Player 2

Strategy 1 2 3 4

1 �3 �3 �2 �4
Player 1 2 �4 �2 �1 �1

3 �1 �1 �2 �0

Player 2

Strategy 1 2 3

1 2 �3 �1
Player 1 2 1 �4 �0

3 3 �2 �1

However, because considerable staff work is required to research
and formulate the issue chosen, each politician must make her own
choice before learning the opponent’s choice. Which issue should
she choose?

For each of the situations described here, formulate this prob-
lem as a two-person, zero-sum game, and then determine which
issue should be chosen by each politician according to the speci-
fied criterion.
(a) The current preferences of the voters are very uncertain, so

each additional percent of votes won by one of the politicians
has the same value to her. Use the minimax criterion.

(b) A reliable poll has found that the percentage of the voters cur-
rently preferring politician 1 (before the issues have been
raised) lies between 45 and 50 percent. (Assume a uniform dis-
tribution over this range.) Use the concept of dominated strate-
gies, beginning with the strategies for politician 1.

(c) Suppose that the percentage described in part (b) actually were
45 percent. Should politician 1 use the minimax criterion? Ex-
plain. Which issue would you recommend? Why?

14.2-8. Briefly describe what you feel are the advantages and dis-
advantages of the minimax criterion.

14.3-1. Consider the following parlor game between two players.
It begins when a referee flips a coin, notes whether it comes up
heads or tails, and then shows this result to player 1 only. Player
1 may then (1) pass and thereby pay $5 to player 2 or (2) bet. If
player 1 passes, the game is terminated. However, if he bets, the
game continues, in which case player 2 may then either (1) pass
and thereby pay $5 to player 1 or (2) call. If player 2 calls, the ref-
eree then shows him the coin; if it came up heads, player 2 pays
$10 to player 1; if it came up tails, player 2 receives $10 from
player 1.

Issue for
Politician 2

1 2 3

1 �7 �1 �3
Issue for

2 �1 �0 �2
Politician 1

3 �5 �3 �1



(b)(a) Give the pure strategies for each player. (Hint: Player 1 will
have four pure strategies, each one specifying how he would
respond to each of the two results the referee can show him;
player 2 will have two pure strategies, each one specifying how
he will respond if player 1 bets.)

(b) Develop the payoff table for this game, using expected values
for the entries when necessary. Then identify and eliminate any
dominated strategies.

(c) Show that none of the entries in the resulting payoff table are
a saddle point. Then explain why any fixed choice of a pure
strategy for each of the two players must be an unstable solu-
tion, so mixed strategies should be used instead.

(d) Write an expression for the expected payoff in terms of the
probabilities of the two players using their respective pure
strategies. Then show what this expression reduces to for the
following three cases: (i) Player 2 definitely uses his first strat-
egy, (ii) player 2 definitely uses his second strategy, (iii) player
2 assigns equal probabilities to using his two strategies.

14.4-1. Reconsider Prob. 14.3-1. Use the graphical procedure de-
scribed in Sec. 14.4 to determine the optimal mixed strategy for
each player according to the minimax criterion. Also give the cor-
responding value of the game.

14.4-2. Consider the game having the following payoff table.
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Use the graphical procedure described in Sec. 14.4 to determine
the value of the game and the optimal mixed strategy for each
player according to the minimax criterion. Check your answer for
player 2 by constructing his payoff table and applying the graph-
ical procedure directly to this table.

14.4-3.* For each of the following payoff tables, use the graphi-
cal procedure described in Sec. 14.4 to determine the value of the
game and the optimal mixed strategy for each player according to
the minimax criterion.

Player 2

Strategy 1 2

1 �3 �2
Player 1

2 �1 �2

Player 2

Strategy 1 2 3

1 4 3 1
Player 1

2 0 1 2

Player 2

Strategy 1 2 3

1 �1 �1 �3
2 �0 �4 �1

Player 1
3 �3 �2 �5
4 �3 �6 �2

14.4-4. The A. J. Swim Team soon will have an important swim
meet with the G. N. Swim Team. Each team has a star swimmer
(John and Mark, respectively) who can swim very well in the 100-
yard butterfly, backstroke, and breaststroke events. However, the
rules prevent them from being used in more than two of these
events. Therefore, their coaches now need to decide how to use
them to maximum advantage.

Each team will enter three swimmers per event (the maximum
allowed). For each event, the following table gives the best time
previously achieved by John and Mark as well as the best time for
each of the other swimmers who will definitely enter that event.
(Whichever event John or Mark does not swim, his team’s third
entry for that event will be slower than the two shown in the table.)

A. J. Swim Team G. N. Swim Team

Entry Entry

1 2 John Mark 1 2

Butterfly
stroke 1:01.6 59.1 57.5 58.4 1:03.2 59.8

Backstroke 1:06.8 1:05.6 1:03.3 1:02.6 1:04.9 1:04.1
Breaststroke 1:13.9 1:12.5 1:04.7 1:06.1 1:15.3 1:11.8

The points awarded are 5 points for first place, 3 points for
second place, 1 point for third place, and none for lower places.
Both coaches believe that all swimmers will essentially equal their
best times in this meet. Thus, John and Mark each will definitely
be entered in two of these three events.
(a) The coaches must submit all their entries before the meet with-

out knowing the entries for the other team, and no changes are
permitted later. The outcome of the meet is very uncertain, so
each additional point has equal value for the coaches. Formu-
late this problem as a two-person, zero-sum game. Eliminate
dominated strategies, and then use the graphical procedure de-
scribed in Sec. 14.4 to find the optimal mixed strategy for each
team according to the minimax criterion.

(b) The situation and assignment are the same as in part (a), ex-
cept that both coaches now believe that the A. J. team will win

(a)



the swim meet if it can win 13 or more points in these three
events, but will lose with less than 13 points. [Compare the re-
sulting optimal mixed strategies with those obtained in part (a).]

(c) Now suppose that the coaches submit their entries during the
meet one event at a time. When submitting his entries for an
event, the coach does not know who will be swimming that
event for the other team, but he does know who has swum in
preceding events. The three key events just discussed are swum
in the order listed in the table. Once again, the A. J. team needs
13 points in these events to win the swim meet. Formulate this
problem as a two-person, zero-sum game. Then use the con-
cept of dominated strategies to determine the best strategy for
the G. N. team that actually “guarantees” it will win under the
assumptions being made.

(d) The situation is the same as in part (c). However, now assume
that the coach for the G. N. team does not know about game
theory and so may, in fact, choose any of his available strate-
gies that have Mark swimming two events. Use the concept of
dominated strategies to determine the best strategies from
which the coach for the A. J. team should choose. If this coach
knows that the other coach has a tendency to enter Mark in the
butterfly and the backstroke more often than in the breaststroke,
which strategy should she choose?

14.5-1. Refer to the last paragraph of Sec. 14.5. Suppose that 3
were added to all the entries of Table 14.6 to ensure that the cor-
responding linear programming models for both players have fea-
sible solutions with x3 	 0 and y4 	 0. Write out these two mod-
els. Based on the information given in Sec. 14.5, what are the
optimal solutions for these two models? What is the relationship
between x*3 and y*4? What is the relationship between the value of
the original game v and the values of x*3 and y*4?

14.5-2.* Consider the game having the following payoff table.
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14.5-3. Follow the instructions of Prob. 14.5-2 for the game hav-
ing the following payoff table.

Player 2

Strategy 1 2 3 4

1 5 0 3 1
Player 1 2 2 4 3 2

3 3 2 0 4

(a) Use the approach described in Sec. 14.5 to formulate the prob-
lem of finding optimal mixed strategies according to the min-
imax criterion as a linear programming problem.

C (b) Use the simplex method to find these optimal mixed
strategies.

14.5-4. Follow the instructions of Prob. 14.5-2 for the game hav-
ing the following payoff table.

14.5-5. Section 14.5 presents a general linear programming for-
mulation for finding an optimal mixed strategy for player 1 and for
player 2. Using Table 6.14, show that the linear programming prob-
lem given for player 2 is the dual of the problem given for player
1. (Hint: Remember that a dual variable with a nonpositivity con-
straint yi� � 0 can be replaced by yi � �yi� with a nonnegativity
constraint yi 	 0.)

14.5-6. Consider the linear programming models for players 1 and
2 given near the end of Sec. 14.5 for variation 3 of the political
campaign problem (see Table 14.6). Follow the instructions of Prob.
14.5-5 for these two models.

14.5-7. Consider variation 3 of the political campaign problem (see
Table 14.6). Refer to the resulting linear programming model for
player 1 given near the end of Sec. 14.5. Ignoring the objective
function variable x3, plot the feasible region for x1 and x2 graphi-
cally (as described in Sec. 3.1). (Hint: This feasible region con-
sists of a single line segment.) Next, write an algebraic expression
for the maximizing value of x3 for any point in this feasible region.
Finally, use this expression to demonstrate that the optimal solu-
tion must, in fact, be the one given in Sec. 14.5.

C 14.5-8. Consider the linear programming model for player 1
given near the end of Sec. 14.5 for variation 3 of the political cam-
paign problem (see Table 14.6). Verify the optimal mixed strate-
gies for both players given in Sec. 14.5 by applying an automatic
routine for the simplex method to this model to find both its opti-
mal solution and its optimal dual solution.

Player 2

Strategy 1 2 3

1 �4 2 �3
Player 1 2 �1 0 �3

3 �2 3 �2

Player 2

Strategy 1 2 3 4 5

1 �1 �3 �2 �2 �1
2 �2 �3 �0 �3 �2

Player 1
3 �0 �4 �1 �3 �2
4 �4 �0 �2 �2 �1



strategies under the minimax criterion. Prove that eliminating
weakly dominated strategies from the payoff table cannot elim-
inate all these saddle points and cannot produce any new ones.

(b) Assume that the payoff table does not possess any saddle
points, so that the optimal strategies under the minimax crite-
rion are mixed strategies. Prove that eliminating weakly dom-
inated pure strategies from the payoff table cannot eliminate
all optimal mixed strategies and cannot produce any new ones.

14.5-9. Consider the general m � n, two-person, zero-sum game.
Let pij denote the payoff to player 1 if he plays his strategy 
i (i � 1, . . . , m) and player 2 plays her strategy j ( j � 1, . . . , n).
Strategy 1 (say) for player 1 is said to be weakly dominated by
strategy 2 (say) if p1j � p2j for j � 1, . . . , n and p1j � p2j for one
or more values of j.
(a) Assume that the payoff table possesses one or more saddle

points, so that the players have corresponding optimal pure
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