
11.1 Introduction
11.2 Clocks, events and process states
11.3 Synchronizing physical clocks
11.4 Logical time and logical clocks
11.5 Global states

Chapter 14. Time and Global States

 Introduction

• We need to measure time accurately:
• to know the time an event occurred at a computer
• to do this we need to synchronize its clock with an authoritative

external clock

• Algorithms for clock synchronization useful for
• concurrency control based on timestamp ordering
• authenticity of requests e.g. in Kerberos

• There is no global clock in a distributed system
• this chapter discusses clock accuracy and synchronization

• Logical time is an alternative
• It gives ordering of events - also useful for consistency of replicated

data

Ch 2: Computer clocks and timing events

• Each computer in a DS has its own internal clock
– used by local processes to obtain the value of the current time
– processes on different computers can timestamp their events
– but clocks on different computers may give different times
– computer clocks drift from perfect time and their drift rates differ from

one another.
– clock drift rate: the relative amount that a computer clock differs from

a perfect clock

Even if clocks on all computers in a DS are set to the
same time, their clocks will eventually vary quite
significantly unless corrections are applied

14.2 Clocks, events and process states

How to order the events that occur at a single processor

A distributed system is defined as a collection P of N processes pi, i = 1,2,… N
Each process pi has a state si consisting of its variables (which it transforms as it
executes)
Processes communicate only by messages (via a network)
Actions of processes:

– Send, Receive, change own state

Event: the occurrence of a single action that a process carries out as it executes
e.g. Send, Receive, change state
Events at a single process pi, can be placed in a total ordering denoted by the
relation →i between the events. i.e.

e →i e’ if and only if the event e occurs before e’ at pi

A history of process pi : is a series of events ordered by →i 　

history(pi)= hi = <ei
0, ei

1, ei
2, …>

Clocks

How to timestamp the events that occur at a single processor

How to assign to them a date and time of day

To timestamp events, use the computer’s clock

At real time, t, the OS reads the time on the computer’s hardware clock Hi(t)

It calculates the time on its software clock
Ci(t) = αHi(t) + β

– if Ci behaves well enough, we can use its value to timestamp any event at pi

Successive events will correspond to different timestamps only if the clock
resolution < time interval between successive events

Clock resolution: the period between updates of the clock value

Skew between computer clocks in a distributed system

Computer clocks are not generally in perfect agreement
Skew: the difference between the times on two clocks (at any instant)
Computer clocks are subject to clock drift (they count time at different rates)
Clock drift rate: the difference per unit of time from some ideal reference clock
Ordinary quartz clocks drift by about 1 sec in 11-12 days. (10-6 secs/sec).
High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec

Network

Coordinated Universal Time (UTC)

International Atomic Time is based on very accurate physical clocks (drift
rate 10-13)

UTC is an international standard for time keeping

It is based on atomic time, but occasionally adjusted to astronomical time

It is broadcast from radio stations on land and satellite (e.g. GPS)

Computers with receivers can synchronize their clocks with these timing
signals

Signals from land-based stations are accurate to about 0.1-10 millisecond

Signals from GPS are accurate to about 1 microsecond

Why can't we put GPS receivers on all our computers?

14.3 Synchronizing physical clocks

External synchronization
– A computer’s clock Ci is synchronized with an external authoritative time

source S, so that:
– |S(t) - Ci(t)| < D for i = 1, 2, … N over an interval, I of real time
– The clocks Ci are accurate to within the bound D.

Internal synchronization
– The clocks of a pair of computers are synchronized with one another so that:
– |Ci(t) - Cj(t)| < D for i, j = 1, 2, … N over an interval, I of real time
– The clocks Ci and Cj agree within the bound D.

Internally synchronized clocks are not necessarily externally
synchronized, as they may drift collectively
if the set of processes P is synchronized externally within a
bound D, it is also internally synchronized within bound 2D

Clock correctness

A hardware clock, H is said to be correct if its drift rate is within a bound ρ
> 0. (e.g. 10-6 secs/ sec)
This means that the error in measuring the interval between real times t
and t’ is bounded:

– (1 - ρ) (t’ - t) ≤ H(t’) - H(t) ≤ (1 + ρ) (t’ - t) (where t’>t)
– Which forbids jumps in time readings of hardware clocks

Weaker condition of monotonicity may suffice:
– t' > t ⇒ C(t’) > C(t) that is, a clock C only ever advances
– can achieve monotonicity with a hardware clock that runs fast by adjusting the values of

α and β in Ci(t)= αHi(t) + β

a faulty clock is one that does not obey its correctness condition
crash failure - a clock stops ticking
arbitrary failure - any other failure e.g. jumps in time

Synchronization in a synchronous system

a synchronous distributed system is one in which the following bounds are
defined (ch. 2):

– the time to execute each step of a process has known lower and upper bounds
– each message transmitted over a channel is received within a known bounded time
– each process has a local clock whose drift rate from real time has a known bound

Internal synchronization in a synchronous system
– One process p1 sends its local time t to process p2 in a message m,

– p2 could set its clock to t + Ttrans where Ttrans is the time to transmit m

– Ttrans is unknown but min ≤ Ttrans ≤ max

– min can be measured or conservatively estimated

– max known in synchronous system

– uncertainty u = max-min. Set clock to t + (max - min)/2 then skew ≤ u/2

Cristian’s method (1989) for an asynchronous system

mr

mt
p Time server,S

External synchronization
A time server S receives signals from a UTC source
– Process p requests time in mr and receives t in mt from S
– p sets its clock to t + Tround/2
– Accuracy ± (Tround/2 - min) :

because the earliest time S puts t in message mt is min after p sent mr

the latest time was min before mt arrived at p
the time by S’s clock when mt arrives is in the range [t+min, t + Tround - min]
the width of the range is Tround - 2min, so the accuracy is ± (Tround/2 - min)

Tround is the round trip time recorded by p
min is an estimated minimum round trip time

Wrong! min should be one way trip time!

Berkeley algorithm (skip)

Cristian’s algorithm -
– a single time server might fail, so they suggest the use of a group of

synchronized servers
– it does not deal with faulty servers

Berkeley algorithm (also 1989)
– An algorithm for internal synchronization of a group of computers
– A master polls to collect clock values from the others (slaves)
– The master uses round trip times to estimate the slaves’ clock values
– It takes an average (eliminating any above some average round trip time or

with faulty clocks)
– It sends the required adjustment to the slaves (better than sending the time

which depends on the round trip time)
– Measurements

15 computers, clock synchronization 20-25 millisecs drift rate < 2x10-5

If master fails, can elect a new master to take over

Network Time Protocol (NTP)

1

2

3

2

3 3

Cristian’s method and the Berkeley algorithm are intended for intranets

NTP: a time service for the Internet - synchronizes clients to UTC
• Reliability from redundant paths, scalable, authenticates time sources

The synchronization subnet can reconfigure if failures occur, e.g.
– a primary that loses its UTC source can become a secondary
– a secondary that loses its primary can use another primary

Primary servers are connected to UTC sources

Secondary servers are synchronized to primary servers

Leaf servers - lowest level servers in users’ computers

Synchronization
subnet

NTP - synchronisation of servers

3 Modes of synchronization:
Multicast

A server within a high speed LAN multicasts time to others which set
clocks assuming some delay (not very accurate)

Procedure call
A server accepts requests from other computers (like Cristiain’s
algorithm). Higher accuracy. Useful if no hardware multicast.

Symmetric
Pairs of servers exchange messages containing time information
Used where very high accuracies are needed (e.g. for higher levels)

Messages exchanged between a pair of NTP peers (skip)

Ti

Ti-1Ti-2

Ti- 3

Server B
Time

m m'

Time

All modes use UDP
Each message bears timestamps of recent events:

– Local times of Send and Receive of previous message
– Local times of Send of current message

Recipient notes the time of receipt Ti (we have Ti-3, Ti-2, Ti-1, Ti)
In symmetric mode there can be a non-negligible delay between
messages

Server A

Accuracy of NTP (skip)

For each pair of messages between two servers, NTP
estimates an offset o, between the two clocks and a delay di
(total time for the two messages, which take t and t’)
Ti-2 = Ti-3 + t + o and Ti = Ti-1 + t’ - o

This gives us (by adding the equations) :
di = t + t’ = Ti-2 - Ti-3 + Ti - Ti-1

Also (by subtracting the equations)
o = oi + (t’ - t)/2 where oi = (Ti-2 - Ti-3 + Ti-1 - Ti)/2

Using the fact that t, t’>0 it can be shown that
oi - di /2 ≤ o ≤ oi + di /2 .
– Thus oi is an estimate of the offset and di is a measure of the accuracy

NTP servers filter pairs <oi, di>, estimating reliability from
variation, allowing them to select peers
Accuracy of 10s of millisecs over Internet paths (1 on LANs)

Logical time and logical clocks (Lamport 1978)

Instead of synchronizing clocks, event ordering can be used
– If two events occurred at the same process pi (i = 1, 2, … N) then they occurred in the order observed

by pi, that is the order →i
– when a message, m is sent between two processes, send(m) happened before receive(m)
happened-before relation: obtained by generalizing the above two relations
– denoted by →
– HB1, HB2 are formal statements of the above two relations
– HB3 means happened-before is transitive

p 1

p 2

p 3

a b

c d

e f

m 1

m 2

Physical
time

Not all events are related by →, e.g., a → e and e → a
consider a and e (different processes and no chain of messages to relate them)
they are not related by → ; they are said to be concurrent; write as a || e

a→ b (at p1) c→d (at p2) b → c because of m1 also d→ f because of m2

Lamport’s logical clocks

A logical clock is a monotonically increasing software counter. It need not
relate to a physical clock
Each process pi has a logical clock, Li which can be used to apply logical
timestamps to events

– LC1: Li is incremented by 1 before each event at process pi
– LC2: (a) when process pi sends message m, it piggybacks t = Li

(b) when pj receives (m,t), it sets Lj := max(Lj, t) and applies LC1 before timestamping
the event receive (m)

e → e’ ⇒ L(e) < L(e’) but not vice versa, example?

each of p1, p2, p3 has its logical clock initialised to zero, the clock values are those
immediately after the event. e.g. 1 for a, 2 for b.
for m1, 2 is piggybacked and c gets max(0,2)+1 = 3

L(e) < L(b) but e || b

p 1

p 2

p 3

a b

c d

e f

m 1

m 2

Physical
time

Vector clocks (Mattern [1989] and Fidge [1991])

Vector clocks overcome the shortcoming of Lamport logical clocks
– (L(e) < L(e’) does not imply e happened before e’)

Vector clock Vi at process pi is an array of N integers, a vector
Each process keeps its own vector clock Vi ,used to timestamp local events
Vi[i] is the number of events that pi has timestamped
Vi[j] (j≠ i) is the number of events at pj that pi has been affected by

Rules for updating clocks:
VC1:initially Vi[j] = 0 for i, j = 1, 2, …N
VC2:before pi timestamps an event it sets Vi[i] := Vi[i] +1
VC3:pi piggybacks t = Vi on every message it sends
VC4:when pi receives (m,t) it sets Vi[j] := max(Vi[j] , t[j]) j = 1, 2, …N (then
before next event adds I to own element using VC2)

– Merge operation

E.g. at p2, (0, 0, 0) -> (0, 1, 0) -> (0, 2, 0) -> (0, 3, 0) … -> (1, 4, 3)

Now, received a mes. from p3 that piggybacks t = (1, 0, 3),

Compare vector timestams

• Meaning of =, <=, < for vector timestamps - compare elements pairwise

(1) V = V’ iff V[j] = V’[j] for j = 1, 2, …, N
(2) V ≤ V’ iff V[j] ≤ V’[j] for j = 1, 2, …, N
(3) V < V’ iff V ≤ V’ and V ≠ V’

Examples: V1 and V2
(1, 3, 2) (1, 3, 3)
(1, 3, 2) (1, 3, 0)
(1, 3, 2) (1, 3, 2)
(1, 3, 2) (2, 3, 1)

p3

Vector clock example

a b

c d

e f

m 1

m 2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2
Physical

time

At p1: a(1,0,0) b (2,0,0) piggyback (2,0,0) on m1

At p2: on receipt of m1 get max ((0,0,0), (2,0,0)) = (2, 0, 0) add 1 to own element = (2,1,0)

• Note that e→ e’ implies V(e) < V(e’). The converse is also true. (assignment)
• V(a) < V(f) Can you see a pair of parallel events?

c || e(parallel) because neither V(c) <= V(e) nor V(e) <= V(c).

Vector clock example P1 P2 P3

100 001

300

200

242

243
250

260
450

550

000 000 000
010

220

264
273

230
240

e

x

For fixed event e.

x e iff
V(x) < V(e)

Vector clock example P1 P2 P3

100 001

300

200

242

243
250

260
450

550

000 000 000
010

220

264
273

230
240
e

x

For fixed event e.

e x iff
V(e) < V(x)

Summary on time and clocks in distributed systems

accurate timekeeping is important for distributed systems.
algorithms (e.g. Cristian’s and NTP) synchronize clocks in
spite of their drift and the variability of message delays.
for ordering of an arbitrary pair of events at different
computers, clock synchronization is not always practical.
the happened-before relation is a partial order on events that
reflects a flow of information between them.
Lamport clocks are counters that are updated according to
the happened-before relationship between events.
vector clocks are an improvement on Lamport clocks,
– we can tell whether two events are ordered by happened-before or are

concurrent by comparing their vector timestamps

Snapshots taken at 2:00pm by local clocks

11.5 Global states

We are interested in a consistent global state. Intuitively, it means a set of process
states + channel states.
As in transaction systems, it is sometimes desirable to store checkpoints of a
distributed system to be able to restart from a well-defined past state after a crash.

$100 $0

$100

$0 $100

$0

1:59pm

2:01

(a) (b)
message delay

(c)
not synchronized

sum = $100 sum = $0 sum = $200

$100In channel
$100 $100

Cuts

A cut C can be represented by a curve in the time-process diagram which
crosses all process lines.
C divides all events to PC (those happened before C) and FC (future events)
Cut C is consistent if there is no message whose sending event is in FC and
whose receiving event is in PC

Cuts are made on states. A cut corresponds to the set of states it crosses.
– A consistent (inconsistent) cut leads to a consistent (inconsistent) set of states.

m1 m2

p1

p2
Physical

time

e1
0

Consistent cutInconsistent cut

e 1
1 e 1

2 e 1
3

e 2
0 e 2

1 e 2
2

Progress shown by cuts

P

Q

p1 p2 p3 p4

q1 q2 q3

Time

5*4 = 20

1 2 3 4 5 7 8

How many possible cuts are there?

One ordering of a series of consistent global states (cuts),
corresponding to one possible actual flow of the global
states of the DS. It can be derived from the partial order
of vector clocks, which contains all the possible flows.

The lattice of global states

P

Q

p1 p2 p3 p4

q1 q2 q3

Time

1 2 3 4 5 7 8

Lattice represents partial order.
All consistent global states can be put in
the “lattice of global states”
And, all possible flows can be derived
from the lattice, the one in the above
figure is only one of them

S00

S10

S20

S21S30

S31

S32

S22

S23

S33

S43

Level 0

1

2

3

4

5

6

7

Sij = global state after i events
at P and j events at Q

Inconsistent cuts

P

Q

p1 p2 p3 p4

q1 q2 q3

Time

2*3 + 1*3 = 9 are inconsistent,
and 11 are consistent.

Inconsistent cut cannot actually happen States in
Inconsistent cut could not have coexisted.

How many inconsistent cuts are there?

More examples

P

Q

R

p1 p2 p3 p4

q1

q2 q3 q4

r1 r2 r3 r4

q5

Time

consistent
cut

inconsistent
cut

M

Can we derive a “cheap” rule for making quick decision?
A cut is inconsistent if it passes the arrow for the message
that it crosses

More consistent cuts

P

Q

R

p1 p2 p3 p4

q1

q2 q3 q4

r1 r2 r3 r4

q5

Time

Apply the “cheap” rule to verify

Checkpointing

Cut C is consistent C doesn’t contradict
sequence of events experienced by any site
can assume it did exist at the same time
Can use snapshot as checkpoint, from which
activity in distributed system can be resumed
after crash

SNAPSHOT algorithm analog: census taking

Chandy and Lamport [1985] describe a SNAPSHOT algorithm for determining
global states of DS. The goal is to record a set of process and channel states (a
snapshot) for a set of processes pi (i = 1, 2, …, N)
“Census taking in ancient kingdom”: want to take census counting all
people, some of whom may be traveling on highways

Village

Village

Village

Village

villages are strongly connected

FIFO road

Census taking algorithm

Close all gates into/out of each village (process) and count
people (record process state) in village; these actions need
not be synched with other villages
Open each outgoing gate and send official with a red cap
(special marker message).
Open each incoming gate and count all travelers (record
channel state = messages sent but not received yet) who
arrive ahead of official.
Tally the counts from all villages.

In fact, it works as long as at least one village initiates census taking.
The termination condition is, each village sees the arrival of a red-capped official
on every incoming road.
Note that at termination, every road has been traversed by an official exactly once

Algorithm SNAPSHOT

All processes are initially white: Messages sent by white(red)
processes are also white (red)
MSend [Marker sending rule for process P]
– Suspend all other activities until done
– Record P’s state
– Turn red
– Send one marker over each output channel of P.

MReceive [Marker receiving rule for P]
On receiving marker over channel C,
– if P is white { Record state of channel C as empty;

Invoke MSend; }
– else record the state of C as sequence of white messages received since P

turned red.
– Stop when marker is received on each incoming channel

Property of SNAPSHOT

If network is strongly connected and at least one
process initiates MSend, then SNAPSHOT
will take consistent global snapshot (collection of
process states and channel states).
i.e. SNAPSHOT makes consistent cuts

The processes may continue their execution and
send and receive normal messages while the
snapshot takes place

Snapshots taken by SNAPSHOT algorithm

$100 $0 $0$0

A B BA

(a) (b)

sum = $100 sum = $100

OK OK
Need not use time.

$100 inchannel

msgs arriving
before maker

constitute
channel state

$100 $0
$0

$0
1:59pm

2:01

(a) (b) message delay
sum = $100 sum = $0

$100In channel
$100

Cuts corresponding to snapshots

$100 $0 $0$0

A B BA

(a) (b)

sum = $100 sum = $100

$100 inchannel

Note that
they intersect

Snapshot only generates consistent cuts

Snapshots taken by SNAPSHOT

$100

$100

BA

(c)

sum = $200

Cannot happen

$100

$100

BA

(c’)

sum = $100

$0

Will be like this

marker marker

marker

$100

$100

(c) not synchronized
sum = $200

$100

Cut corresponding to snapshot

$100

$100

BA

sum = $200

M
State of A
before M
was sent

Msg M goes from future to past
SNOPSHOP never generates such cut

State of B
after M
was received

$100

BA

(c’)

sum = $100

$0

Will be like this

marker

marker

