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1. What is a Distributed System?

Definition: A distributed system is one in which 

components located at networked computers

communicate and coordinate their actions only by 

passing messages.  This definition leads to the following 

characteristics of distributed systems:

Concurrency of components

Lack of a global clock

Independent failures of components



1.1 Centralized System Characteristics

 One component with non-autonomous parts

 Component shared by users all the time

 All resources accessible

 Software runs in a single process

 Single point of control

 Single point of failure



1.2 Distributed System Characteristics

 Multiple autonomous components

 Components are not shared by all users

 Resources may not be accessible

 Software runs in concurrent processes on different 

processors

 Multiple points of control

 Multiple points of failure



2. Examples of  Distributed Systems

 Local Area Network and Intranet

 Database Management System

 Automatic Teller Machine Network

 Internet/World-Wide Web

 Mobile and Ubiquitous Computing



2.1 Local Area Network
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2.2 Database Management System 

(DBMS)



2.3 Automatic Teller Machine Network
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2.4.2  Web Servers and Web Browsers
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2.5  Mobile and Ubiquitous Computing
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3. Common Characteristics

 What are we trying to achieve when we construct a distributed 

system?

 Certain common characteristics can be used to assess 

distributed systems

 Heterogeneity

 Openness

 Security

 Scalability 

 Failure Handling

 Concurrency

 Transparency



3.1 Heterogeneity

 Variety and differences in

 Networks

 Computer hardware

 Operating systems

 Programming languages

 Implementations by different developers

 Middleware as software layers to provide a programming 
abstraction as well as masking the heterogeneity of the 
underlying networks, hardware, OS, and programming 
languages (e.g., Web service).

 Mobile Code to refer to code that can be sent from one 
computer to another and run at the destination (e.g., Java 
applets, Java virtual machine, Apps).



3.2 Openness

 Openness is concerned with extensions and improvements of 

distributed systems.

 Detailed interfaces of components need to be published.

 New components have to be integrated with existing 

components.

 Differences in data representation of interface types on 

different processors (of different vendors) have to be resolved.



3.3  Security

 In a distributed system, clients send requests to access 

data managed by servers, resources in the networks:

 Doctors requesting records from hospitals

 Users purchase products through electronic commerce

 Security is required for

 Concealing the contents of messages: security and privacy

 Identifying a remote user or other agent correctly: authentication

 New challenges:

 Denial of service attack

 Security of mobile code or apps



3.4 Scalability

 Adaptation of distributed systems to

▪ accommodate more users

▪ respond faster (this is the hard one)

 Usually done by adding more and/or faster processors.

 Components should not need to be changed when scale of a 

system increases.

 Design components to be scalable!



3.5 Failure Handling (Fault Tolerance)

 Hardware, software and networks fail!

 Distributed systems must maintain availability even at low 

levels of hardware/software/network reliability.

 Fault tolerance is achieved by 

▪ recovery

▪ redundancy



3.6 Concurrency

 Components in distributed systems are executed in 

concurrent processes.

 Components access and update shared resources (e.g. 

variables, databases, device drivers).

 Integrity of the system may be violated if concurrent updates 

are not coordinated.

▪ Lost updates

▪ Inconsistent analysis



3.7 Transparency

 Distributed systems should be perceived by users and 

application programmers as a whole rather than as a 

collection of cooperating components.

 Transparency has different aspects.

 These represent various properties that distributed systems 

should have.



3.7.1 Access Transparency

 Enables local and remote information objects to be 

accessed using identical operations.

 Example: File system operations

 Example: Navigation in the Web

 Example: Database queries.



3.7.2 Location Transparency

 Enables information objects to be accessed without 

knowledge of their location.

 Example: File system operations

 Example: Pages in the Web

 Example: Tables in distributed databases



3.7.3 Concurrency Transparency

 Enables several processes to operate concurrently using 

shared information objects without interference between them.

 Example: File system operations

 Example: Automatic teller machine network

 Example: Database Management System (DBMS)



3.7.4 Replication Transparency

 Enables multiple instances of information objects to be used 

to increase reliability and performance without knowledge of 

the replicas by users or application programs

 Example: Distributed DBMS

 Example: Mirroring Web Pages



3.7.5 Failure Transparency

 Enables the concealment of faults

 Allows users and applications to complete their tasks despite 

the failure of other components.

 Example: Database Management System (DBMS)



3.7.6 Mobility Transparency

 Allows the movement of information objects within a system 

without affecting the operations of users or application 

programs

 Example: NFS

 Example: Web Pages



3.7.7 Performance Transparency

 Allows the system to be reconfigured to improve performance 

as loads vary and parallelism can be explored.

 Example: Hadoop which implements MapReduce.



3.7.8 Scaling Transparency

 Allows the system and applications to expand in scale without 

change to the system structure or the application algorithms.

 Example: World-Wide-Web

 Example: Distributed Database



4. Design Issues

 Specific issues for distributed systems:

 Naming

 Communication

 Software structure

 System architecture

 Workload allocation

 Consistency maintenance



4.1 Naming

 A name is resolved when translated into an interpretable form for 

resource/object reference.

 Communication identifier (IP address + port number)

 Name resolution involves several translation steps

 Design considerations

 Choice of name space for each resource type

 Name service to resolve resource names to comm. id.

 Name services include naming context resolution, hierarchical 

structure, resource protection



4.2 Communication

 Separated components communicate with sending 

processes and receiving processes for data transfer and 

synchronization.

 Message passing: send and receive primitives

 synchronous or blocking

 asynchronous or non-blocking

 Abstractions defined: channels, sockets, ports.

 Communication patterns: client-server communication (e.g., 

RPC, function shipping) and group multicast



4.3 Software Structure

 Layers in centralized computer systems:
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4.3 Software Structure

 Layers and dependencies in distributed systems:
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4.4 System Architectures

 Client-server

 Peer-to-peer

 Services provided by multiple servers

 Proxy servers and caches

 Mobile code and mobile agents

 Network computers

 Thin clients and mobile devices



4.4.1 Clients Invoke Individual Servers
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4.4.2 Peer-to-peer Systems
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4.4.3 A Service by Multiple Servers
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4.4.4 Web Proxy Server
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4.4.5 Web Applets

a) client request results in the downloading of  applet code 
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4.4.6 Thin Clients and Compute Servers
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5. Summary

 Definitions of distributed systems and comparisons to 

centralized systems.

 The characteristics of distributed systems.

 The eight forms of transparency.

 The basic design issues.

 Read Chapter 1 and Chapter 2 of the textbook.


