
Chapter 1:

Characterization of distributed systems

Sam Nguyen-Xuan, Ph.D.
Faculty of Information Technology No. 2

Posts and Telecoms of Institute and Technology

Ho Chi Minh City Campus, Vietnam

03/12/2017 1

Outline

1. What is a Distributed System

2. Examples of Distributed Systems

3. Common Characteristics

4. Basic Design Issues

5. Summary

1. Distributed System Types

Fully

Distributed

Processors

Control

Fully replicated

Not fully replicated

master directory

Local data,

local directory

Master-slave

Autonomous trans-

action based

Autonomous

fully cooperative

Homog.

special

purpose

Heterog.

special

purpose

Homog.

general

purpose

Heterog.

general

purpose

1. What is a Distributed System?

Definition: A distributed system is one in which

components located at networked computers

communicate and coordinate their actions only by

passing messages. This definition leads to the following

characteristics of distributed systems:

Concurrency of components

Lack of a global clock

Independent failures of components

1.1 Centralized System Characteristics

 One component with non-autonomous parts

 Component shared by users all the time

 All resources accessible

 Software runs in a single process

 Single point of control

 Single point of failure

1.2 Distributed System Characteristics

 Multiple autonomous components

 Components are not shared by all users

 Resources may not be accessible

 Software runs in concurrent processes on different

processors

 Multiple points of control

 Multiple points of failure

2. Examples of Distributed Systems

 Local Area Network and Intranet

 Database Management System

 Automatic Teller Machine Network

 Internet/World-Wide Web

 Mobile and Ubiquitous Computing

2.1 Local Area Network

the res t of

email server

Web server

Desktop
computers

File serv er

router/ f irewall

print and other servers

other servers

print

Local area

network

email server

the Internet

2.2 Database Management System

(DBMS)

2.3 Automatic Teller Machine Network

2.4 Internet

intranet

ISP

desktop computer:

backbone

satellite link

server:

%

network link:

%

%

%

2.4.2 Web Servers and Web Browsers

Internet

Browsers
Web servers

www.google.com

www.cse.cuhk.edu.hk

www.w3c.org

Protocols

Activity.html

http://www.w3c.org/Protocols/Activity.html

http://www.google.comlsearch?q=lyu

http://www.cse.cuhk.edu.hk/

File system of

www.w3c.org

2.5 Mobile and Ubiquitous Computing

Laptop

Mobile

Printer

Camera

Internet

Host intranet Home intranet
GSM/GPRS

Wireless LAN

phone

gateway

Host site

3. Common Characteristics

 What are we trying to achieve when we construct a distributed

system?

 Certain common characteristics can be used to assess

distributed systems

 Heterogeneity

 Openness

 Security

 Scalability

 Failure Handling

 Concurrency

 Transparency

3.1 Heterogeneity

 Variety and differences in

 Networks

 Computer hardware

 Operating systems

 Programming languages

 Implementations by different developers

 Middleware as software layers to provide a programming
abstraction as well as masking the heterogeneity of the
underlying networks, hardware, OS, and programming
languages (e.g., Web service).

 Mobile Code to refer to code that can be sent from one
computer to another and run at the destination (e.g., Java
applets, Java virtual machine, Apps).

3.2 Openness

 Openness is concerned with extensions and improvements of

distributed systems.

 Detailed interfaces of components need to be published.

 New components have to be integrated with existing

components.

 Differences in data representation of interface types on

different processors (of different vendors) have to be resolved.

3.3 Security

 In a distributed system, clients send requests to access

data managed by servers, resources in the networks:

 Doctors requesting records from hospitals

 Users purchase products through electronic commerce

 Security is required for

 Concealing the contents of messages: security and privacy

 Identifying a remote user or other agent correctly: authentication

 New challenges:

 Denial of service attack

 Security of mobile code or apps

3.4 Scalability

 Adaptation of distributed systems to

▪ accommodate more users

▪ respond faster (this is the hard one)

 Usually done by adding more and/or faster processors.

 Components should not need to be changed when scale of a

system increases.

 Design components to be scalable!

3.5 Failure Handling (Fault Tolerance)

 Hardware, software and networks fail!

 Distributed systems must maintain availability even at low

levels of hardware/software/network reliability.

 Fault tolerance is achieved by

▪ recovery

▪ redundancy

3.6 Concurrency

 Components in distributed systems are executed in

concurrent processes.

 Components access and update shared resources (e.g.

variables, databases, device drivers).

 Integrity of the system may be violated if concurrent updates

are not coordinated.

▪ Lost updates

▪ Inconsistent analysis

3.7 Transparency

 Distributed systems should be perceived by users and

application programmers as a whole rather than as a

collection of cooperating components.

 Transparency has different aspects.

 These represent various properties that distributed systems

should have.

3.7.1 Access Transparency

 Enables local and remote information objects to be

accessed using identical operations.

 Example: File system operations

 Example: Navigation in the Web

 Example: Database queries.

3.7.2 Location Transparency

 Enables information objects to be accessed without

knowledge of their location.

 Example: File system operations

 Example: Pages in the Web

 Example: Tables in distributed databases

3.7.3 Concurrency Transparency

 Enables several processes to operate concurrently using

shared information objects without interference between them.

 Example: File system operations

 Example: Automatic teller machine network

 Example: Database Management System (DBMS)

3.7.4 Replication Transparency

 Enables multiple instances of information objects to be used

to increase reliability and performance without knowledge of

the replicas by users or application programs

 Example: Distributed DBMS

 Example: Mirroring Web Pages

3.7.5 Failure Transparency

 Enables the concealment of faults

 Allows users and applications to complete their tasks despite

the failure of other components.

 Example: Database Management System (DBMS)

3.7.6 Mobility Transparency

 Allows the movement of information objects within a system

without affecting the operations of users or application

programs

 Example: NFS

 Example: Web Pages

3.7.7 Performance Transparency

 Allows the system to be reconfigured to improve performance

as loads vary and parallelism can be explored.

 Example: Hadoop which implements MapReduce.

3.7.8 Scaling Transparency

 Allows the system and applications to expand in scale without

change to the system structure or the application algorithms.

 Example: World-Wide-Web

 Example: Distributed Database

4. Design Issues

 Specific issues for distributed systems:

 Naming

 Communication

 Software structure

 System architecture

 Workload allocation

 Consistency maintenance

4.1 Naming

 A name is resolved when translated into an interpretable form for

resource/object reference.

 Communication identifier (IP address + port number)

 Name resolution involves several translation steps

 Design considerations

 Choice of name space for each resource type

 Name service to resolve resource names to comm. id.

 Name services include naming context resolution, hierarchical

structure, resource protection

4.2 Communication

 Separated components communicate with sending

processes and receiving processes for data transfer and

synchronization.

 Message passing: send and receive primitives

 synchronous or blocking

 asynchronous or non-blocking

 Abstractions defined: channels, sockets, ports.

 Communication patterns: client-server communication (e.g.,

RPC, function shipping) and group multicast

4.3 Software Structure

 Layers in centralized computer systems:

Applications

Middleware

Operating system

Computer and Network Hardware
Platform

4.3 Software Structure

 Layers and dependencies in distributed systems:

Applications

Distributed programming

support

Open

services

Open system kernel services

Computer and network hardware

4.4 System Architectures

 Client-server

 Peer-to-peer

 Services provided by multiple servers

 Proxy servers and caches

 Mobile code and mobile agents

 Network computers

 Thin clients and mobile devices

4.4.1 Clients Invoke Individual Servers

Serv er

Client

Client

invocation

result

Serv er
invocation

result

Process:
Key :

Computer:

4.4.2 Peer-to-peer Systems

Application

Application

Application

Peer 1

Peer 2

Peer 3

Peers 5 N

Sharable
objects

Application

Peer 4

4.4.3 A Service by Multiple Servers

Serv er

Serv er

Serv er

Serv ice

Client

Client

4.4.4 Web Proxy Server

Client

Proxy

Web

serv er

Web

serv er

serv er
Client

4.4.5 Web Applets

a) client request results in the downloading of applet code

Web

serv er

Client
Web

serv erApplet

Applet code

Client

b) client interacts with the applet

4.4.6 Thin Clients and Compute Servers

Thin
Client

Application
Process

Network computer or PC
Compute server

network

5. Summary

 Definitions of distributed systems and comparisons to

centralized systems.

 The characteristics of distributed systems.

 The eight forms of transparency.

 The basic design issues.

 Read Chapter 1 and Chapter 2 of the textbook.

