
Chapter 1: 

Characterization of  distributed systems

Sam Nguyen-Xuan, Ph.D.
Faculty of Information Technology No. 2 

Posts and Telecoms of Institute and Technology

Ho Chi Minh City Campus, Vietnam

03/12/2017 1



Outline

1. What is a Distributed System

2. Examples of Distributed Systems

3. Common Characteristics

4. Basic Design Issues

5. Summary



1. Distributed System Types

Fully

Distributed

Processors

Control

Fully replicated

Not fully replicated

master directory

Local data,

local directory

Master-slave

Autonomous trans-

action based

Autonomous

fully cooperative

Homog. 

special

purpose

Heterog.

special

purpose

Homog.

general

purpose

Heterog.

general

purpose



1. What is a Distributed System?

Definition: A distributed system is one in which 

components located at networked computers

communicate and coordinate their actions only by 

passing messages.  This definition leads to the following 

characteristics of distributed systems:

Concurrency of components

Lack of a global clock

Independent failures of components



1.1 Centralized System Characteristics

 One component with non-autonomous parts

 Component shared by users all the time

 All resources accessible

 Software runs in a single process

 Single point of control

 Single point of failure



1.2 Distributed System Characteristics

 Multiple autonomous components

 Components are not shared by all users

 Resources may not be accessible

 Software runs in concurrent processes on different 

processors

 Multiple points of control

 Multiple points of failure



2. Examples of  Distributed Systems

 Local Area Network and Intranet

 Database Management System

 Automatic Teller Machine Network

 Internet/World-Wide Web

 Mobile and Ubiquitous Computing



2.1 Local Area Network

the res t of  

email server

Web server

Desktop
computers

File serv er

router/ f irewall

print  and other servers

other servers

print

Local area

network

email server

the Internet



2.2 Database Management System 

(DBMS)



2.3 Automatic Teller Machine Network



2.4  Internet

intranet

ISP

desktop computer:

backbone

satellite link

server:

%

network link:

%

%

%



2.4.2  Web Servers and Web Browsers

Internet

Browsers
Web servers

www.google.com

www.cse.cuhk.edu.hk

www.w3c.org

Protocols

Activity.html

http://www.w3c.org/Protocols/Activity.html

http://www.google.comlsearch?q=lyu

http://www.cse.cuhk.edu.hk/

File system of

www.w3c.org



2.5  Mobile and Ubiquitous Computing

Laptop

Mobile

Printer

Camera

Internet

Host intranet Home intranet
GSM/GPRS 

Wireless LAN

phone

gateway

Host site



3. Common Characteristics

 What are we trying to achieve when we construct a distributed 

system?

 Certain common characteristics can be used to assess 

distributed systems

 Heterogeneity

 Openness

 Security

 Scalability 

 Failure Handling

 Concurrency

 Transparency



3.1 Heterogeneity

 Variety and differences in

 Networks

 Computer hardware

 Operating systems

 Programming languages

 Implementations by different developers

 Middleware as software layers to provide a programming 
abstraction as well as masking the heterogeneity of the 
underlying networks, hardware, OS, and programming 
languages (e.g., Web service).

 Mobile Code to refer to code that can be sent from one 
computer to another and run at the destination (e.g., Java 
applets, Java virtual machine, Apps).



3.2 Openness

 Openness is concerned with extensions and improvements of 

distributed systems.

 Detailed interfaces of components need to be published.

 New components have to be integrated with existing 

components.

 Differences in data representation of interface types on 

different processors (of different vendors) have to be resolved.



3.3  Security

 In a distributed system, clients send requests to access 

data managed by servers, resources in the networks:

 Doctors requesting records from hospitals

 Users purchase products through electronic commerce

 Security is required for

 Concealing the contents of messages: security and privacy

 Identifying a remote user or other agent correctly: authentication

 New challenges:

 Denial of service attack

 Security of mobile code or apps



3.4 Scalability

 Adaptation of distributed systems to

▪ accommodate more users

▪ respond faster (this is the hard one)

 Usually done by adding more and/or faster processors.

 Components should not need to be changed when scale of a 

system increases.

 Design components to be scalable!



3.5 Failure Handling (Fault Tolerance)

 Hardware, software and networks fail!

 Distributed systems must maintain availability even at low 

levels of hardware/software/network reliability.

 Fault tolerance is achieved by 

▪ recovery

▪ redundancy



3.6 Concurrency

 Components in distributed systems are executed in 

concurrent processes.

 Components access and update shared resources (e.g. 

variables, databases, device drivers).

 Integrity of the system may be violated if concurrent updates 

are not coordinated.

▪ Lost updates

▪ Inconsistent analysis



3.7 Transparency

 Distributed systems should be perceived by users and 

application programmers as a whole rather than as a 

collection of cooperating components.

 Transparency has different aspects.

 These represent various properties that distributed systems 

should have.



3.7.1 Access Transparency

 Enables local and remote information objects to be 

accessed using identical operations.

 Example: File system operations

 Example: Navigation in the Web

 Example: Database queries.



3.7.2 Location Transparency

 Enables information objects to be accessed without 

knowledge of their location.

 Example: File system operations

 Example: Pages in the Web

 Example: Tables in distributed databases



3.7.3 Concurrency Transparency

 Enables several processes to operate concurrently using 

shared information objects without interference between them.

 Example: File system operations

 Example: Automatic teller machine network

 Example: Database Management System (DBMS)



3.7.4 Replication Transparency

 Enables multiple instances of information objects to be used 

to increase reliability and performance without knowledge of 

the replicas by users or application programs

 Example: Distributed DBMS

 Example: Mirroring Web Pages



3.7.5 Failure Transparency

 Enables the concealment of faults

 Allows users and applications to complete their tasks despite 

the failure of other components.

 Example: Database Management System (DBMS)



3.7.6 Mobility Transparency

 Allows the movement of information objects within a system 

without affecting the operations of users or application 

programs

 Example: NFS

 Example: Web Pages



3.7.7 Performance Transparency

 Allows the system to be reconfigured to improve performance 

as loads vary and parallelism can be explored.

 Example: Hadoop which implements MapReduce.



3.7.8 Scaling Transparency

 Allows the system and applications to expand in scale without 

change to the system structure or the application algorithms.

 Example: World-Wide-Web

 Example: Distributed Database



4. Design Issues

 Specific issues for distributed systems:

 Naming

 Communication

 Software structure

 System architecture

 Workload allocation

 Consistency maintenance



4.1 Naming

 A name is resolved when translated into an interpretable form for 

resource/object reference.

 Communication identifier (IP address + port number)

 Name resolution involves several translation steps

 Design considerations

 Choice of name space for each resource type

 Name service to resolve resource names to comm. id.

 Name services include naming context resolution, hierarchical 

structure, resource protection



4.2 Communication

 Separated components communicate with sending 

processes and receiving processes for data transfer and 

synchronization.

 Message passing: send and receive primitives

 synchronous or blocking

 asynchronous or non-blocking

 Abstractions defined: channels, sockets, ports.

 Communication patterns: client-server communication (e.g., 

RPC, function shipping) and group multicast



4.3 Software Structure

 Layers in centralized computer systems:

Applications

Middleware

Operating system

Computer and Network Hardware
Platform



4.3 Software Structure

 Layers and dependencies in distributed systems:

Applications

Distributed programming

support

Open

services

Open system kernel services

Computer and network hardware



4.4 System Architectures

 Client-server

 Peer-to-peer

 Services provided by multiple servers

 Proxy servers and caches

 Mobile code and mobile agents

 Network computers

 Thin clients and mobile devices



4.4.1 Clients Invoke Individual Servers

Serv er

Client

Client

invocation

result

Serv er
invocation

result

Process:
Key :

Computer:



4.4.2 Peer-to-peer Systems

Application

Application

Application

Peer 1

Peer 2

Peer 3

Peers 5 . . ..  N

Sharable
objects

Application

Peer 4



4.4.3 A Service by Multiple Servers

Serv er

Serv er

Serv er

Serv ice

Client

Client



4.4.4 Web Proxy Server

Client

Proxy

Web 

serv er

Web 

serv er

serv er
Client



4.4.5 Web Applets

a) client request results in the downloading of  applet code 

Web 

serv er

Client
Web 

serv erApplet

Applet  code

Client

b) client  interacts with the applet  



4.4.6 Thin Clients and Compute Servers

Thin
Client

Application
Process

Network computer or PC
Compute server

network



5. Summary

 Definitions of distributed systems and comparisons to 

centralized systems.

 The characteristics of distributed systems.

 The eight forms of transparency.

 The basic design issues.

 Read Chapter 1 and Chapter 2 of the textbook.


