Computing Platforms

* Example: alarm clock



Alarm clock interface

Alarm on Alarm off

Alarm
ready

® © o o

set set hour minut;\

time alarm button

Computers as Components 4e © 2016 Marilyn Wolf



Operations

 Set time: hold set time, depress hour, minute.
* Set alarm time: hold set alarm, depress hour, minute.
* Turn alarm on/off: depress alarm on/off.



Alarm clock requirements

name alarm clock

purpose 24-hour digital clock with one alarm

inputs set time, set alarm, hour, minute, alarm on/off
outputs four-digit display, PM indicator, alarm ready, buzzer
functions keep time, set time, set alarm, turn alarm on/off,

activate buzzer by alarm
performance hours and digits, no seconds; not high precision

manufacturing consumer product

cost

power AC

physical fits on stand
size/weight

Computers as Components 3e
Computers as C@pazemiarigriOngIfL 6 Marilyn Wolf



Alarm clock class diagram

Computers as Components 4e © 2016 Marilyn Wolf



Alarm clock physical classes

- set-time(): boolean buzz()
d!g!t-val() set-alarm(): boolean
dlglt-scan(? alarm-on(): boolean
aIarrr_1—on-Iught() alarm-off(): boolean
PM-light()

minute(): boolean
hour(): boolean

Computers as Components 4e © 2016 Marilyn Wolf



Display class

time[4]: integer
alarm-indicator: boolean
PM-indicator: boolean

set-time()
alarm-light-on()
alarm-light-off()
PM-light-on()
PM-light-off()

Computers as Components 4e © 2016 Marilyn Wolf



Mechanism class

Seconds: integer

PM: boolean

tens-hours, ones-hours: boolean

tens-minutes, ones-minutes: boolean

alarm-ready: boolean

alarm-tens-hours, alarm-ones-hours:
boolean

alarm-tens-minutes, alarm-ones-minutes:
boolean

scan-keyboard()
update-time()

Computers as Components 4e © 2016 Marilyn Wolf



Update-time behavior

Rollover?

AM->PM

Computers as Components 4e © 2016 Marilyn Wolf



Scan-keyboard behavior

Set-time and
not set-alarm
and hours

Set-time a-

not set-alarm
and minutes

Alarm-on

Alarm-

Computers as Components 4e © 2016 Marilyn Wolf



System architecture

* Includes:
 periodic behavior (clock);
 aperiodic behavior (buttons, buzzer activation).

* Two major software components:
* interrupt-driven routine updates time;
* foreground program deals with buttons, commands.



Interrupt-driven routine

e Timer probably can’t handle one-minute interrupt interval.
* Use software variable to convert interrupt frequency to seconds.



Foreground program

* Operates as while loop:
while (TRUE) {
read_buttons(button_values);
process_command(button_values);
check_alarm();



Testing

* Component testing:
* test interrupt code on the platform;
 can test foreground program using a mock-up.

* System testing:
* relatively few components to integrate;
» check clock accuracy;
* check recognition of buttons, buzzer, etc.



