Computing Platforms

• Example: audio player

Audio theory of operation

- MP3 is widely used audio format, many other formats are in use.
- Audio compression uses perceptual coding.
 - Some features of audio may not be perceptible.
 - Removing unnecessary features can reduce size of the data.

MPEG audio standards

- Layer 1:
 - Lossless compression of subbands + optional simple masking model
- Layer 2:
 - More advanced masking model.
- Layer 3:
 - Additional processing for lower bit rates.

MPEG audio rates

- Input sampling rates:
 - 32, 44.1, 48 kHz.
- Output bit rates:
 - 23, 48, 64, 96, 112, 128, 192, 256, 384 kbits/sec.
- Output can be mono, dual-channel (bilingual, etc.), stereo.

Other standards

- Dolby Digital (AC-3):
 - Uses modified discrete cosine transform.
- ATRAC (MiniDisc):
 - Uses subband + modified DCT.
- MPEG-2 AAC.

MPEG Layer 1

- 384 samples/block at all frequencies.
 - Equals 8 ms at 48 kHz.
- Optional masking model.
 - Driven by separate FFT for better accuracy.

MPEG Layer 1 data frame

- Bit allocation codes specify word length in each subband.
- Scale factors give gain for each band.

header	CRC	bit allocation	scale factors	subband samples	aux data
--------	-----	-------------------	------------------	-----------------	-------------

MPEG Layer 1 encoder

MPEG Layer 1 encoder operations

- Filter bank divides signal into subbands.
- Masking model chooses audio features to ignore.
- Quantizer chooses number of bits.
- Scale factor fits signal within 6 bit range.

MPEG Layer 1 decoder

MPEG Layer 1 decoder operations

- Decoding is less computationally expensive:
 - Apply step size, scaling, inverse quantization.
 - Combine subbands.

Audio player requirements

Category	Description	
Name	Audio player.	
Purpose	Play audio from file.	
Inputs	Flash socket, on/off, play/stop, menu up/down.	
Outputs	Speaker	
Functions	Display list of files in memory, select file to play, play file.	
Performance	Sufficient for audio playback.	
Power	1 AAA battery.	
Physical weight/size	Approx. 1" x 2", less than 2 oz.	

Audio player classes

Audio file Audio directory Controller String: Name Int: Size FileID: Files[] FileID: Handle Main() Display FileID **Buttons** String: Text Boolean: power, Boolean: Play play, menu up, menu down Audio out

File display/state selection

Audio playback

Computers as Components 4e © 2016 Marilyn Wolf

Component design and testing

- Audio decompression, file system can be acquired as software IP or created from scratch.
- If flash is not transferrable, non-standard file system may be useful.
- File system and audio decompression can be tested separately.

Cirrus platform architecture

