
CPUs

 Caches.

 Memory management.

Computers as Components 4e © 2016

Marilyn Wolf

Hỗ trợ tang tốc độ Xử lý bộ nhớ máy tính

Caches and CPUs

Computers as Components 4e © 2016

Marilyn Wolf

CPU
c
a

c
h

e

c
o

n
tr

o
lle

r

cache

main

memory

data

data

address

data

address

Cache operation

 Many main memory locations are mapped

onto one cache entry.

 May have caches for:

 instructions;

 data;

 data + instructions (unified).

 Memory access time is no longer

deterministic.

Computers as Components 4e © 2016

Marilyn Wolf

Terms

 Cache hit: required location is in cache.

 Cache miss: required location is not in cache.

 Working set: set of locations used by

program in a time interval.

Computers as Components 4e © 2016

Marilyn Wolf

Types of misses

 Compulsory (cold): location has never been

accessed.

 Capacity: working set is too large.

 Conflict: multiple locations in working set map

to same cache entry.

Computers as Components 4e © 2016

Marilyn Wolf

Memory system performance

 h = cache hit rate.

 tcache = cache access time, tmain = main

memory access time.

 Average memory access time:

 tav = htcache + (1-h)tmain

Computers as Components 4e © 2016

Marilyn Wolf

Multiple levels of cache

Computers as Components 4e © 2016

Marilyn Wolf

CPU L1 cache L2 cache

Multi-level cache access time

 h1 = cache hit rate.

 h2 = rate for miss on L1, hit on L2.

 Average memory access time:

 tav = h1tL1 + (h2-h1)tL2 + (1- h2-h1)tmain

Computers as Components 4e © 2016

Marilyn Wolf

Replacement policies

 Replacement policy: strategy for choosing

which cache entry to throw out to make room

for a new memory location.

 Two popular strategies:

 Random.

 Least-recently used (LRU).

Computers as Components 4e © 2016

Marilyn Wolf

Cache organizations

 Fully-associative: any memory location can

be stored anywhere in the cache (almost

never implemented).

 Direct-mapped: each memory location maps

onto exactly one cache entry.

 N-way set-associative: each memory location

can go into one of n sets.

Computers as Components 4e © 2016

Marilyn Wolf

Cache performance benefits

 Keep frequently-accessed locations in fast

cache.

 Cache retrieves more than one word at a

time.

 Sequential accesses are faster after first access.

Computers as Components 4e © 2016

Marilyn Wolf

Direct-mapped cache

Computers as Components 4e © 2016

Marilyn Wolf

valid

=

tag index offset

hit value

tag data

1 0xabcd byte byte byte ...

byte

cache block

Write operations

 Write-through: immediately copy write to

main memory.

 Write-back: write to main memory only when

location is removed from cache.

Computers as Components 4e © 2016

Marilyn Wolf

Direct-mapped cache locations

 Many locations map onto the same cache

block.

 Conflict misses are easy to generate:

 Array a[] uses locations 0, 1, 2, …

 Array b[] uses locations 1024, 1025, 1026, …

 Operation a[i] + b[i] generates conflict misses.

Computers as Components 4e © 2016

Marilyn Wolf

Set-associative cache

 A set of direct-mapped caches:

Computers as Components 4e © 2016

Marilyn Wolf

Set 1 Set 2 Set n...

hit data

Computers as Components 3e

© 2012 Marilyn Wolf

Example: direct-mapped vs. set-

associative

address data

000 0101

001 1111

010 0000

011 0110

100 1000

101 0001

110 1010

111 0100

Computers as Components 4e © 2016

Marilyn Wolf

Direct-mapped cache behavior

 After 001 access:

block tag data

00 - -

01 0 1111

10 - -

11 - -

 After 010 access:

block tag data

00 - -

01 0 1111

10 0 0000

11 - -

Computers as Components 4e © 2016

Marilyn Wolf

Direct-mapped cache behavior, cont’d.

 After 011 access:

block tag data

00 - -

01 0 1111

10 0 0000

11 0 0110

 After 100 access:

block tag data

00 1 1000

01 0 1111

10 0 0000

11 0 0110

Computers as Components 4e © 2016

Marilyn Wolf

Direct-mapped cache behavior, cont’d.

 After 101 access:

block tag data

00 1 1000

01 1 0001

10 0 0000

11 0 0110

 After 111 access:

block tag data

00 1 1000

01 1 0001

10 0 0000

11 1 0100

Computers as Components 4e © 2016

Marilyn Wolf

2-way set-associtive cache behavior

 Final state of cache (twice as big as direct-

mapped):

set blk 0 tag blk 0 data blk 1 tag blk 1 data

00 1 1000 - -

01 0 1111 1 0001

10 0 0000 - -

11 0 0110 1 0100

Computers as Components 4e © 2016

Marilyn Wolf

2-way set-associative cache

behavior
 Final state of cache (same size as direct-

mapped):

set blk 0 tag blk 0 data blk 1 tag blk 1 data

0 01 0000 10 1000

1 10 0111 11 0100

Computers as Components 4e © 2016

Marilyn Wolf

Example caches

 StrongARM:

 16 Kbyte, 32-way, 32-byte block instruction cache.

 16 Kbyte, 32-way, 32-byte block data cache

(write-back).

 SHARC:

 32-instruction, 2-way instruction cache.

Computers as Components 4e © 2016

Marilyn Wolf

Memory management units

 Memory management unit (MMU)
translates addresses:

Computers as Components 4e © 2016

Marilyn Wolf

CPU
main

memory

memory

management

unit

logical

address
physical

address

Memory management tasks

 Allows programs to move in physical memory

during execution.

 Allows virtual memory:

 memory images kept in secondary storage;

 images returned to main memory on demand

during execution.

 Page fault: request for location not resident in

memory.

Computers as Components 4e © 2016

Marilyn Wolf

Address translation

 Requires some sort of register/table to allow

arbitrary mappings of logical to physical

addresses.

 Two basic schemes:

 segmented;

 paged.

 Segmentation and paging can be combined

(x86).

Computers as Components 4e © 2016

Marilyn Wolf

Segments and pages

Computers as Components 4e © 2016

Marilyn Wolf

memory

segment 1

segment 2

page 1

page 2

Segment address translation

Computers as Components 4e © 2016

Marilyn Wolf

segment base address logical address

range

check

physical address

+

range

error
segment lower bound

segment upper bound

Page address translation

Computers as Components 4e © 2016

Marilyn Wolf

page offset

page offset

page i base

concatenate

Page table organizations

Computers as Components 4e © 2016

Marilyn Wolf

flat tree

page descriptor

page

descriptor

Caching address translations

 Large translation tables require main memory

access.

 TLB: cache for address translation.

 Typically small.

Computers as Components 4e © 2016

Marilyn Wolf

ARM memory management

 Memory region types:

 section: 1 Mbyte block;

 large page: 64 kbytes;

 small page: 4 kbytes.

 An address is marked as section-mapped or

page-mapped.

 Two-level translation scheme.

Computers as Components 4e © 2016

Marilyn Wolf

ARM address translation

Computers as Components 4e © 2016

Marilyn Wolf

offset1st index 2nd index

physical address

Translation table

base register

1st level table

descriptor

2nd level table

descriptor

concatenate

concatenate

