

Memory management.

- Many main memory locations are mapped onto one cache entry.
- May have caches for:
 - instructions;
 - data;
 - data + instructions (unified).
- Memory access time is no longer deterministic.

- Cache hit: required location is in cache.
- Cache miss: required location is not in cache.
- Working set: set of locations used by program in a time interval.

Types of misses

- Compulsory (cold): location has never been accessed.
- Capacity: working set is too large.
- Conflict: multiple locations in working set map to same cache entry.

Memory system performance

- h = cache hit rate.
- t_{cache} = cache access time, t_{main} = main memory access time.
- Average memory access time:

$$\bullet t_{av} = ht_{cache} + (1-h)t_{main}$$

Multiple levels of cache

Multi-level cache access time

- h_1 = cache hit rate.
- h_2 = rate for miss on L1, hit on L2.
- Average memory access time:
 - $t_{av} = h_1 t_{L1} + (h_2 h_1) t_{L2 +} (1 h_2 h_1) t_{main}$

Replacement policies

- Replacement policy: strategy for choosing which cache entry to throw out to make room for a new memory location.
- Two popular strategies:
 - Random.
 - Least-recently used (LRU).

Cache organizations

- Fully-associative: any memory location can be stored anywhere in the cache (almost never implemented).
- Direct-mapped: each memory location maps onto exactly one cache entry.
- N-way set-associative: each memory location can go into one of n sets.

Cache performance benefits

- Keep frequently-accessed locations in fast cache.
- Cache retrieves more than one word at a time.
 - Sequential accesses are faster after first access.

Direct-mapped cache

Write operations

- Write-through: immediately copy write to main memory.
- Write-back: write to main memory only when location is removed from cache.

Direct-mapped cache locations

- Many locations map onto the same cache block.
- Conflict misses are easy to generate:
 - Array a[] uses locations 0, 1, 2, …
 - Array b[] uses locations 1024, 1025, 1026, …
 - Operation a[i] + b[i] generates conflict misses.

• A set of direct-mapped caches:

Example: direct-mapped vs. setassociative

address	data
000	0101
001	1111
010	0000
011	0110
100	1000
101	0001
110	1010
111	0100

Direct-mapped cache behavior

After 001 access:		After 010 access:			
block	tag	data	block	tag	data
00	-	-	00	-	-
01	0	1111	01	0	1111
10	-	-	10	0	0000
11	-	-	11	-	-

Direct-mapped cache behavior, cont'd.

After 011 access:		After 100 access:			
block	tag	data	block	tag	data
00	-	-	00	1	1000
01	0	1111	01	0	1111
10	0	0000	10	0	0000
11	0	0110	11	0	0110

Direct-mapped cache behavior, cont'd.

After 101 access:		After 111 access:			
block	tag	data	block	tag	data
00	1	1000	00	1	1000
01	1	0001	01	1	0001
10	0	0000	10	0	0000
11	0	0110	11	1	0100

2-way set-associtive cache behavior

Final state of cache (twice as big as directmapped):

set blk 0 tag	blk 0 data	blk 1 tag	blk 1 data
00 1	1000	-	-
01 0	1111	1	0001
10 0	0000	-	-
11 0	0110	1	0100

2-way set-associative cache behavior Final state of cache (same size as direct-

mapped):

set blk 0 tagblk 0 datablk 1 tagblk 1 data00100001010001100111110100

Example caches

StrongARM:

- □ 16 Kbyte, 32-way, 32-byte block instruction cache.
- 16 Kbyte, 32-way, 32-byte block data cache (write-back).

SHARC:

32-instruction, 2-way instruction cache.

Memory management units

Memory management unit (MMU) translates addresses:

Memory management tasks

- Allows programs to move in physical memory during execution.
- Allows virtual memory:
 - memory images kept in secondary storage;
 - images returned to main memory on demand during execution.
- Page fault: request for location not resident in memory.

Address translation

- Requires some sort of register/table to allow arbitrary mappings of logical to physical addresses.
- Two basic schemes:
 - segmented;
 - □ paged.
- Segmentation and paging can be combined (x86).

Segments and pages

Computers as Components 4e © 2016 Marilyn Wolf

Segment address translation

Page address translation

Page table organizations

Caching address translations

- Large translation tables require main memory access.
- TLB: cache for address translation.
 - Typically small.

ARM memory management

- Memory region types:
 - section: 1 Mbyte block;
 - Iarge page: 64 kbytes;
 - small page: 4 kbytes.
- An address is marked as section-mapped or page-mapped.
- Two-level translation scheme.

ARM address translation

