= ARM versions.

= ARM assembly language.
= ARM programming model.
= ARM memory organization.
= ARM data operations.

= ARM flow of control.

Computers as Components 3e
© 2012 Marilyn Wolf

/)
(5,. T ARM versions

——e

m ARM architecture has been extended over several versions.
= \We will concentrate on ARM?Y.

Computers as Components 3e
© 2012 Marilyn Wolf

/)
é‘,. T ARM assembly language

m Fairly standard assembly language:

LDR r@,[r8] ; a comment
label ADD r4,ro0,rl

Computers as Components 3e
© 2012 Marilyn Wolf

Each mode can access

« A particular set of rO-r12 registers 0 8
« Aparticular r13 (the stack pointer, > 9
sp) and r14 (the link register, Ir) > 10 31
* The program counter, r15 (pc) 3 11 CPSR
« The current program status
register, CPSR r4 r12 A
r5 r13 4 \
ré r14 NZCV
r7 r15 (PC)

The top four bits of the CPSR hold the following useful information about the results of that
arithmetic/logical operation:

m The negative (N) bit is set when the result is negative in two’s-complement arithmetic.

m'The zero (Z) bit is set when every bit of the result is zero.

mThe carry (C) bit is set when there is a carry out of the operation.

m The overflow (V) bit is set when an arithmetic operation results in an overflow.

Computers as Components 3e
© 2012 Marilyn Wolf

= Relationship between bit and byte/word
ordering defines endianness:

bit 31 bit O bit 31 bit O

byte 3|byte 2|byte 1|byte 0 byte O|byte 1|byte 2|byte 3

little-endian big-endian

Computers as Components 3e
© 2012 Marilyn Wolf

(U,/.) T ARM data types

= Word is 32 bits long.
= Word can be divided into four 8-bit bytes.
s ARM addresses cam be 32 bits long.

m Address refers to byte.
o Address 4 starts at byte 4.

= Can be configured at power-up as either little- or bit-endian
mode.

Computers as Components 3e
© 2012 Marilyn Wolf

m Every arithmetic, logical, or shifting operation sets CPSR bits:
o N (negative), Z (zero), C (carry), V (overflow).

s Examples:
o -1+1=0:NZCV = 0110.
o 231-1+1 = -231: NZCV = 1001.

Computers as Components 3e
© 2012 Marilyn Wolf

= Basic format:

ADD r@,rl,r2

o Computes r1+r2, stores in rO.
= Immediate operand:

ADD ro,rl,#2

o Computes r1+2, stores in r0.

Computers as Components 3e
© 2012 Marilyn Wolf

= ADD, ADC : add (w. carry) = AND, ORR, EOR

s SUB, SBC : subtract (w. m BIC : bit clear

carry) = LSL, LSR : logical shift
s RSB, RSC : reverse left/right

subtract (w. carry) = ASL, ASR : arithmetic shift
= MUL, MLA : multiply (and left/right

accumulate) = ROR : rotate right

s RRX : rotate right extended
with C

Computers as Components 3e
© 2012 Marilyn Wolf

é‘,. T Data operation varieties

= Logical shift:
a fills with zeroes.
= Arithmetic shift:
a fills with ones.

s RRX performs 33-bit rotate, including C bit from CPSR above
sign bit.

Computers as Components 3e
© 2012 Marilyn Wolf

@.T ARM comparison instructions

s CMP : compare

s CMN : negated compare

m [ST : bit-wise test

s TEQ : bit-wise negated test

= These instructions set only the NZCV bits of CPSR.

Computers as Components 3e
© 2012 Marilyn Wolf

(5,. T ARM move instructions

= MOV, MVN : move (negated)

MOV ro, rl ; sets ro to ril

Computers as Components 3e
© 2012 Marilyn Wolf

(U,. T ARM load/store instructions

——e
I, S

= LDR, LDRH, LDRB : load (half-word, byte)
s STR, STRH, STRB : store (half-word, byte)

= Addressing modes:

o register indirect : LDR ro,[rl] ; sets rO to the value of memory
location 0x100 (r1 = Ox 100)

o with second register : LDR ro, [rl,-r2] ; loads rO from the
address given by r1 r2

o with constant : LDR ro,[rl1,#4] ; loads rO from the addressr1 + 4

Computers as Components 3e
© 2012 Marilyn Wolf

@T ARM ADR pseudo-op

——e

s Cannot refer to an address directly in an instruction.
m Generate value by performing arithmetic on PC.

m ADR pseudo-op generates instruction required to calculate
address:
ADR r1,FO0 ; load r1 with the address 0x100

Computers as Components 3e
© 2012 Marilyn Wolf

m C;

x =(a+b) - c;

m Assembler:

ADR
LDR
ADR
LDR
ADD
ADR
LDR

r4,a
ro,[r4]
r4,b
rl,[r4]
r3,ro,rl
r4,c
r2[r4]

; get address for a

; get value of a

; get address for b, reusing r4
; get value of b

; compute a+b

; get address for c

; get value of c

Computers as Components 3e
© 2012 Marilyn Wolf

SUB r3,r3,r2 ; complete computation of x
ADR r4,x ; get address for x
STR r3[r4] ; store value of x

Computers as Components 3e
© 2012 Marilyn Wolf

m C;

y = a*(b+c);

s Assembler:
ADR r4,b ; get address for b
LDR ro,[rd4] ; get value of b
ADR r4,c ; get address for c
LDR rl,[rd4] ; get value of c
ADD r2,r0,rl ; compute partial result
ADR r4,a ; get address for a
LDR ro,[rd4] ; get value of a

Computers as Components 3e
© 2012 Marilyn Wolf

MUL r2,r2,r@ ; compute final value for y
ADR r4,y ; get address for y
STR r2,[r4] ; store y

Computers as Components 3e
© 2012 Marilyn Wolf

m C;

Z =

(a << 2) | (b & 15);

m Assembler:

ADR
LDR
MOV
ADR
LDR
AND
ORR

r4,a ; get address for a
re,[rd4] ; get value of a
ro,re,LSL 2 ; perform shift
r4,b ; get address for b
rl,[r4] ; get value of b
rl,rl,#15 ; perform AND
ri,ro,rl ; perform OR

Computers as Components 3e
© 2012 Marilyn Wolf

ADR r4,z ; get address for z
STR rl,[r4] ; store value for z

Computers as Components 3e
© 2012 Marilyn Wolf

/)
(U,. T Additional addressing modes

——e

m Base-plus-offset addressing:
LDR ro,[rl,#16]
o Loads from location r1+16

= Auto-indexing increments base register:
LDR ro,[rl,#16]!

m Post-indexing fetches, then does offset:
LDR r@,[rl],#16
o Loads rO from r1, then adds 16 to r1.

Computers as Components 3e
© 2012 Marilyn Wolf

/)
é.T ARM flow of control

——e

= All operations can be performed conditionally, testing CPSR:
o EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE

= Branch operation:
B #100 ; add 400 to the current PC value
o Can be performed conditionally.

Computers as Components 3e
© 2012 Marilyn Wolf

é‘,.T Example: if statement

m C;

if (a > b) { x =

5, y =c+d; } else x =c - d;

m Assembler:

J

compute and test condition

ADR
LDR
ADR
LDR
CMP
BGE

r4,a ; get address for a

re,[rd4] ; get value of a

r4,b ; get address for b

rl,[r4] ; get value for b

reo,rl ; compare a < b

fblock ; if a >= b, branch to false block

EQ
NE
CS
cc
Ml
PL
VS
VC
HI
LS
GE
LT
GT
LE

Equals zero

Not equal to zero

Carry set

Carry clear

Minus

Nonnegative (plus)
Overflow

No overflow

Unsigned higher
Unsigned lower or same
Signed greater than or equal
Signed less than

Signed greater than

Signed less than or equal

N=V

N V
Z=0andN=V
Z=1orN V

Computers as Components 3e
© 2012 Marilyn Wolf

é‘,.T If statement, cont’d.

J

MOV
ADR
STR
ADR
LDR
ADR
LDR
ADD
ADR
STR

; true block

ro,#5 ; generate value
r4,x ; get address for
re,[rd4] ; store x

r4,c ; get address for
re,[r4] ; get value of
r4,d ; get address for
rl,[r4] ; get value of
ro,ro,rl ; compute y
r4,y ; get address for
ro,[r4] ; storey

for x

aQ QO N N

y

B after ; branch around false block

Computers as Components 3e
© 2012 Marilyn Wolf

é‘,.T If statement, cont’d.

; false block
fblock ADR r4,c ; get address for c
LDR r@,[rd4] ; get value of c
ADR r4,d ; get address for d
LDR rl,[rd4] ; get value for d
SUB ro,re,rl ; compute a-b
ADR r4,x ; get address for x
STR ro,[r4] ; store value of x
after ...

Computers as Components 3e
© 2012 Marilyn Wolf

@.T Example: switch statement

m C;

switch (test) { case @: .. break; case 1: .. }

s Assembler:
ADR r2,test ; get address for test
LDR r@,[r2] ; load value for test
ADR rl1,switchtab ; load address for switch table
LDR rl,[rl,r0,LSL #2] ; index switch table
switchtab DCD case®
DCD casel

Computers as Components 3e
© 2012 Marilyn Wolf

m C:

for

Example: FIR filter

(i=0, f=0; i<N; i++)

f=Ff + c[i]*x[1i];
m Assembler

; loop initiation code

MOV
MOV
ADR
LDR
MOV

ro,#0 ; use ro for I

r8,#0 ; use separate index for arrays
r2,N ; get address for N

rl,[r2] ; get value of N

r2,#0 ; use r2 for f

Computers as Components 3e
© 2012 Marilyn Wolf

/)
@.T FIR filter, cont’.d

ADR r3,c ; load r3 with base of c
ADR r5,x ; load r5 with base of x

; loop body

loop LDR r4,[r3,r8] ; get c[i]
LDR r6,[r5,r8] ; get x[i]
MUL r4,rd4,r6 ; compute c[i]*x[1i]
ADD r2,r2,r4 ; add into running sum
ADD r8,r8,#4 ; add one word offset to array index
ADD ro,ro,#1 ; add 1 to i
CMP ro,rl ; exit?
BLT loop ; if i < N, continue

Computers as Components 3e
© 2012 Marilyn Wolf

/)
é‘,.T ARM subroutine linkage

m Branch and link instruction:
BL foo
o Copies current PC to r14.

m [0 return from subroutine:
MOV r15,r14

Computers as Components 3e
© 2012 Marilyn Wolf

/)
@.T Nested subroutine calls

= Nesting/recursion requires coding convention:
f1 LDR ro,[rl13] ; load arg into re from stack

; call f2()

STR rl13!,[rl1l4] ; store f1’s return adrs

STR r13!,[r@] ; store arg to f2 on stack

BL f2 ; branch and link to f2

; return from f1()

SUB rl13,#4 ; pop f2’s arg off stack

LDR rl13!,rl5 ; restore register and return

Computers as Components 3e
© 2012 Marilyn Wolf

(/)
(P T Summary

m Load/store architecture

= Most instructions are RISCy, operate in single cycle.
o Some multi-register operations take longer.

= All instructions can be executed conditionally.

Computers as Components 3e
© 2012 Marilyn Wolf

