
Computers as Components 3e

© 2012 Marilyn Wolf

ARM instruction set

 ARM versions.

 ARM assembly language.

 ARM programming model.

 ARM memory organization.

 ARM data operations.

 ARM flow of control.

Computers as Components 3e

© 2012 Marilyn Wolf

ARM versions

 ARM architecture has been extended over several versions.

 We will concentrate on ARM7.

Computers as Components 3e

© 2012 Marilyn Wolf

ARM assembly language

 Fairly standard assembly language:

LDR r0,[r8] ; a comment

label ADD r4,r0,r1

Computers as Components 3e

© 2012 Marilyn Wolf

ARM programming model

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15 (PC)

CPSR

31 0

N Z C V

Each mode can access

• A particular set of r0-r12 registers

• A particular r13 (the stack pointer,

sp) and r14 (the link register, lr)

• The program counter, r15 (pc)

• The current program status

register, CPSR

The top four bits of the CPSR hold the following useful information about the results of that

arithmetic/logical operation:

■The negative (N) bit is set when the result is negative in two’s-complement arithmetic.

■The zero (Z) bit is set when every bit of the result is zero.

■The carry (C) bit is set when there is a carry out of the operation.

■The overflow (V) bit is set when an arithmetic operation results in an overflow.

Computers as Components 3e

© 2012 Marilyn Wolf

Endianness

 Relationship between bit and byte/word

ordering defines endianness:

byte 3 byte 2 byte 1 byte 0 byte 0 byte 1 byte 2 byte 3

bit 31 bit 0 bit 0bit 31

little-endian big-endian

Computers as Components 3e

© 2012 Marilyn Wolf

ARM data types

 Word is 32 bits long.

 Word can be divided into four 8-bit bytes.

 ARM addresses cam be 32 bits long.

 Address refers to byte.

 Address 4 starts at byte 4.

 Can be configured at power-up as either little- or bit-endian

mode.

Computers as Components 3e

© 2012 Marilyn Wolf

ARM status bits

 Every arithmetic, logical, or shifting operation sets CPSR bits:

 N (negative), Z (zero), C (carry), V (overflow).

 Examples:

 -1 + 1 = 0: NZCV = 0110.

 231-1+1 = -231: NZCV = 1001.

Computers as Components 3e

© 2012 Marilyn Wolf

ARM data instructions

 Basic format:

ADD r0,r1,r2

 Computes r1+r2, stores in r0.

 Immediate operand:

ADD r0,r1,#2

 Computes r1+2, stores in r0.

Computers as Components 3e

© 2012 Marilyn Wolf

Computers as Components 3e

© 2012 Marilyn Wolf

ARM data instructions

 ADD, ADC : add (w. carry)

 SUB, SBC : subtract (w.

carry)

 RSB, RSC : reverse

subtract (w. carry)

 MUL, MLA : multiply (and

accumulate)

 AND, ORR, EOR

 BIC : bit clear

 LSL, LSR : logical shift

left/right

 ASL, ASR : arithmetic shift

left/right

 ROR : rotate right

 RRX : rotate right extended

with C

Computers as Components 3e

© 2012 Marilyn Wolf

Data operation varieties

 Logical shift:

 fills with zeroes.

 Arithmetic shift:

 fills with ones.

 RRX performs 33-bit rotate, including C bit from CPSR above

sign bit.

Computers as Components 3e

© 2012 Marilyn Wolf

ARM comparison instructions

 CMP : compare

 CMN : negated compare

 TST : bit-wise test

 TEQ : bit-wise negated test

 These instructions set only the NZCV bits of CPSR.

Computers as Components 3e

© 2012 Marilyn Wolf

ARM move instructions

 MOV, MVN : move (negated)

MOV r0, r1 ; sets r0 to r1

Computers as Components 3e

© 2012 Marilyn Wolf

ARM load/store instructions

 LDR, LDRH, LDRB : load (half-word, byte)

 STR, STRH, STRB : store (half-word, byte)

 Addressing modes:

 register indirect : LDR r0,[r1] ; sets r0 to the value of memory

location 0x100 (r1 = 0x 100)

 with second register : LDR r0,[r1,-r2] ; loads r0 from the

address given by r1 r2

 with constant : LDR r0,[r1,#4] ; loads r0 from the address r1 + 4

Computers as Components 3e

© 2012 Marilyn Wolf

ARM ADR pseudo-op

 Cannot refer to an address directly in an instruction.

 Generate value by performing arithmetic on PC.

 ADR pseudo-op generates instruction required to calculate

address:

ADR r1,FOO ; load r1 with the address 0x100

Computers as Components 3e

© 2012 Marilyn Wolf

Example: C assignments

 C:
x = (a + b) - c;

 Assembler:
ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

ADR r4,b ; get address for b, reusing r4

LDR r1,[r4] ; get value of b

ADD r3,r0,r1 ; compute a+b

ADR r4,c ; get address for c

LDR r2[r4] ; get value of c

Computers as Components 3e

© 2012 Marilyn Wolf

C assignment, cont’d.

SUB r3,r3,r2 ; complete computation of x

ADR r4,x ; get address for x

STR r3[r4] ; store value of x

Computers as Components 3e

© 2012 Marilyn Wolf

Example: C assignment

 C:
y = a*(b+c);

 Assembler:
ADR r4,b ; get address for b

LDR r0,[r4] ; get value of b

ADR r4,c ; get address for c

LDR r1,[r4] ; get value of c

ADD r2,r0,r1 ; compute partial result

ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

Computers as Components 3e

© 2012 Marilyn Wolf

C assignment, cont’d.

MUL r2,r2,r0 ; compute final value for y

ADR r4,y ; get address for y

STR r2,[r4] ; store y

Computers as Components 3e

© 2012 Marilyn Wolf

Example: C assignment

 C:
z = (a << 2) | (b & 15);

 Assembler:
ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

MOV r0,r0,LSL 2 ; perform shift

ADR r4,b ; get address for b

LDR r1,[r4] ; get value of b

AND r1,r1,#15 ; perform AND

ORR r1,r0,r1 ; perform OR

Computers as Components 3e

© 2012 Marilyn Wolf

C assignment, cont’d.

ADR r4,z ; get address for z

STR r1,[r4] ; store value for z

Computers as Components 3e

© 2012 Marilyn Wolf

Additional addressing modes

 Base-plus-offset addressing:

LDR r0,[r1,#16]

 Loads from location r1+16

 Auto-indexing increments base register:

LDR r0,[r1,#16]!

 Post-indexing fetches, then does offset:

LDR r0,[r1],#16

 Loads r0 from r1, then adds 16 to r1.

Computers as Components 3e

© 2012 Marilyn Wolf

ARM flow of control

 All operations can be performed conditionally, testing CPSR:

 EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE

 Branch operation:

B #100 ; add 400 to the current PC value

 Can be performed conditionally.

Computers as Components 3e

© 2012 Marilyn Wolf

Example: if statement

 C:
if (a > b) { x = 5; y = c + d; } else x = c - d;

 Assembler:
; compute and test condition

ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

ADR r4,b ; get address for b

LDR r1,[r4] ; get value for b

CMP r0,r1 ; compare a < b

BGE fblock ; if a >= b, branch to false block

Computers as Components 3e

© 2012 Marilyn Wolf

If statement, cont’d.

; true block

MOV r0,#5 ; generate value for x

ADR r4,x ; get address for x

STR r0,[r4] ; store x

ADR r4,c ; get address for c

LDR r0,[r4] ; get value of c

ADR r4,d ; get address for d

LDR r1,[r4] ; get value of d

ADD r0,r0,r1 ; compute y

ADR r4,y ; get address for y

STR r0,[r4] ; store y

B after ; branch around false block

Computers as Components 3e

© 2012 Marilyn Wolf

If statement, cont’d.

; false block

fblock ADR r4,c ; get address for c

LDR r0,[r4] ; get value of c

ADR r4,d ; get address for d

LDR r1,[r4] ; get value for d

SUB r0,r0,r1 ; compute a-b

ADR r4,x ; get address for x

STR r0,[r4] ; store value of x

after ...

Computers as Components 3e

© 2012 Marilyn Wolf

Example: switch statement

 C:
switch (test) { case 0: … break; case 1: … }

 Assembler:
ADR r2,test ; get address for test

LDR r0,[r2] ; load value for test

ADR r1,switchtab ; load address for switch table

LDR r1,[r1,r0,LSL #2] ; index switch table

switchtab DCD case0

DCD case1

...

Computers as Components 3e

© 2012 Marilyn Wolf

Example: FIR filter

 C:
for (i=0, f=0; i<N; i++)

f = f + c[i]*x[i];

 Assembler
; loop initiation code

MOV r0,#0 ; use r0 for I

MOV r8,#0 ; use separate index for arrays

ADR r2,N ; get address for N

LDR r1,[r2] ; get value of N

MOV r2,#0 ; use r2 for f

Computers as Components 3e

© 2012 Marilyn Wolf

FIR filter, cont’.d

ADR r3,c ; load r3 with base of c

ADR r5,x ; load r5 with base of x

; loop body

loop LDR r4,[r3,r8] ; get c[i]

LDR r6,[r5,r8] ; get x[i]

MUL r4,r4,r6 ; compute c[i]*x[i]

ADD r2,r2,r4 ; add into running sum

ADD r8,r8,#4 ; add one word offset to array index

ADD r0,r0,#1 ; add 1 to i

CMP r0,r1 ; exit?

BLT loop ; if i < N, continue

Computers as Components 3e

© 2012 Marilyn Wolf

ARM subroutine linkage

 Branch and link instruction:

BL foo

 Copies current PC to r14.

 To return from subroutine:

MOV r15,r14

Computers as Components 3e

© 2012 Marilyn Wolf

Nested subroutine calls

 Nesting/recursion requires coding convention:
f1 LDR r0,[r13] ; load arg into r0 from stack

; call f2()

STR r13!,[r14] ; store f1’s return adrs

STR r13!,[r0] ; store arg to f2 on stack

BL f2 ; branch and link to f2

; return from f1()

SUB r13,#4 ; pop f2’s arg off stack

LDR r13!,r15 ; restore register and return

Computers as Components 3e

© 2012 Marilyn Wolf

Summary

 Load/store architecture

 Most instructions are RISCy, operate in single cycle.

 Some multi-register operations take longer.

 All instructions can be executed conditionally.

