IoT systems

- OSI model for networks.
- Internet protocol.
- IoT networking concepts.
- Example networks:
 - Classic Bluetooth, Bluetooth Low Energy.
 - 802.15.4 and Zigbee.
 - Wi-Fi.

Network abstractions

- International Standards Organization (ISO) developed the Open Systems Interconnection (OSI) model to describe networks:
 - 7-layer model.
- Provides a standard way to classify network components and operations.

OSI model

Computers as Components 4e © 2016 Marilyn Wolf

OSI layers

- Physical: connectors, bit formats, etc.
- Data link: error detection and control across a single link (single hop).
- Network: end-to-end multi-hop data communication.
- Transport: provides connections; may optimize network resources.
- Session: services for end-user applications: data grouping, checkpointing, etc.
- Presentation: data formats, transformation services.
- Application: interface between network and end-user programs

PHY and MAC

- PHY = physical layer.
 - Circuitry to transmit and receive bits.
- MAC = media access control.
 - Provides link-level services.

Internet Protocol

- Internet = network of networks.
 - Transports data from one network to another.
- The Internet uses Internet Protocol (IP).
 - Isolated networks can also use IP.

Computers as Components 4e © 2016 Marilyn Wolf

max 65,535 bytes

Version	Header length	Service type	Total length			
Identification			Flags	Fragment offset		
Time to live		Protocol	Header checksum			
Source address						
Destination address						
Options and padding						
Data Data						

IP routing

- IP routing is best effort---no guarantees of packet delivery.
- Build other services on top of IP:
 - Use handshakes to verify delivery of packet.
 - Network routers can enforce quality-of-service.

Internet services

- Domain name service (DNS):
 - Map names onto IP addresses.
- File transfer (FTP):
 - Move files from machine to machine.
- Terminal sessions:
 - Telnet provides terminal-style access.
- Web (HTTP):
 - Built on top of FTP.
- Email (SMTP):
 - Built on top of FTP.

Host-to-host service

- Hides some details of IP:
 - Break host communication into IP packets at source.
 - Reassemble packets at destination.
 - Use handshake to ensure packets arrive, retransmit if necessary.
- Transmission Control Protocol (TCP):
 - Connection-oriented service.
- User Datagram Protocol (UDP):
 - Datagram service.
 - Datagram is modeled after telegram.

FTP HTTP SMTP

Transmission Control Protocol

Simple Network
Management Protocol

User Datagram Protocol

Internet Protocol

IoT networking concepts

- Edge device may not run IP protocol.
 - IP connection may be provided by hub or gateway.
 - Non-IP networks are known as edge networks.
- Ad hoc network is self-organized--not set up by system administrator.
- Ad hoc network services:
 - Authentication of eligibility to join network.
 - Authorization for access to given pieces of information on the network.
 - Encryption and decryption.

Network topologies

Routing

- Routing discovery determines routes between source/destination pairs.
- Routing is driven by routing tables at the nodes.

- Many networks support synchronous and asynchronous communication.
 - Asynchronous: data records, etc.
 - Synchronous: voice, etc.
- Quality-of-service (QoS): bandwidth and periodicity characteristics.
- Admission control ensures that network can handle the QoS demands of a request.

Synchronization and beacons

- Many network operations require nodes to be synchronized.
- Synchronization can be performed using beacon.
 - Beacon transmission marks the beginning of a communications interval.

Communcations energy

- Communications energy is a large part of node energy consumption.
- Comm energy consumption depends on many factors and parameters.
 - Generally evaluated for a set of use cases.
- We can use power state machine to model communications energy cost.

Communications power state machine example

step	state	time	energy
1	sleep	1 ms	1 nJ
2	idle	10 μs	0.5 nJ
3	receive	50 μs	1.25 nJ
4	transmit	50 μs	1.75 nJ
5	receive	50 μs	1.25 nJ
6	transmit	50 μs	1.75 nJ
			total = 7.5 nJ

Bluetooth

- Introduced in 1999, originally for telephony applications.
- Classic Bluetooth operates in instrumentation, scientific, and medical (ISM) band in the 2.4 GHz range.
- Bluetooth networks organized as piconet.
 - One master, several slaves.
 - Slave can be active or parked.
 - A device can be a slave on several networks simultaneously.

Bluetooth stack

- Transport protocol:
 - Radio, baseband layer, link manager, logical link control and adaptation protocol (L2CAP).
- Middleware:
 - RFCOMM for serial port, service discovery protocol, Internet Protocol, IrDA, etc.
- Applications.

Bluetooth protocol

- Every Bluetooth device has a 48-bit Bluetooth Device Address.
- Every device has a Bluetooth clock.
- Transmissions alternate between master and slave directions.
- Two types of packets:
 - Synchronous connection-oriented (SCO) packets for QoS-oriented traffic.
 - Asynchronous connectionless (ACL) packets for non-QoS traffic.
 - SCO traffic has higher priority than ACL packets.

Bluetooth Low Energy

- Designed for very low energy operation such as button-sized battery.
 - Goal: minimize radio on-time.
- Part of Bluetooth standard but deviates from Classic Bluetooth in several ways.
- Advertising transmissions can be used to broadcast, discover devices, etc.
- Connections can be established.
- Attribute Protocol Layer allows devices to create application-specific protocols.
- Generic Attribute Profile Layer (GATT) defines basic attributes for all BLUE devices.
- Pairing devices uses a short-term key to send a long-term key.
 - Bonding: storing long-term key in device database.
 - Optional data encryption using AES.

Computers as Components 4e © 2016 Marilyn Wolf

802.15.4 and ZigBee

- 802.15.4 defines MAC and PHY layers.
 - Supports full-function and reduced-function devices.
 - Either star or peer-to-peer topology.
 - Communciation performed using frames.
 - Optional superframe provides a beacon mechanism and QoS.
- ZigBee is a set of application-oriented standards.
 - NWK layer provides network services.
 - APL layer provides application-level services.
 - Supports many different topologies.

Wi-Fi

- Originally designed for portable and mobile applications.
 - Has been adapted for lower-energy operation.
- Supports ad hoc networking.
- Network provides a set of services:
 - Distribution of messages from one node to another.
 - Integration delivers messages from another network.
 - Association relates a station to an access point.