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Preface

From the beginning of the 1980s we have witnessed a revolution in
computer technology and an explosion in user-friendly applications. This
revolution is still continuing today with low-cost personal computer
systems that rival the performance of expensive workstations. This tech-
nological prowess should be brought to bear on the educational process
and, in particular, on effective teaching that can result in enhanced learn-
ing. This companion book on digital signal processing (DSP) makes a
small contribution toward reaching that goal.

The teaching methods in signal processing have changed over the
years from the simple “lecture-only” format to a more integrated “lecture-
laboratory” environment in which practical hands-on issues are taught
using DSP hardware. However, for effective teaching of DSP the lecture
component must also make extensive use of computer-based explanations,
examples, and exercises. For the past several years, the MATLAB soft-
ware developed by The MathWorks, Inc. has established itself as the de
facto standard for numerical computation in the signal-processing com-
munity and as a platform of choice for algorithm development. There are
several reasons for this development, but the most important reason is
that MATLAB is available on practically all-computing platforms. In this
book we have made an attempt at integrating MATLAB with traditional
topics in DSP so that it can be used to explore difficult topics and solve
problems to gain insight. Many problems or design algorithms in DSP
require considerable computation. It is for these that MATLAB provides
a convenient tool so that many scenarios can be tried with ease. Such an
approach can enhance the learning process.

Xi
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Xii PREFACE

SCOPE OF THE BOOK

This book is primarily intended for use as a supplement in junior- or
senior-level undergraduate courses on DSP. Although we assume that the
student (or user) is familiar with the fundamentals of MATLAB, we have
provided a brief introduction to MATLAB in Chapter 1. Also, this book
is not written as a textbook in DSP because of the availability of excellent
textbooks. What we have tried to do is to provide enough depth to the
material augmented by MATLAB functions and examples so that the
presentation is consistent, logical, and enjoyable. Therefore, this book
can also be used as a self-study guide by anyone interested in DSP.

ORGANIZATION OF THE BOOK
i

The first ten chapters of this book discuss traditional material typically
covered in an introductory course on DSP. The final two chapters are
presented as applications in DSP with emphasis on MATLAB-based
projects. The following is a list of chapters and a brief description of their
contents.

Chapter 1, Introduction: This chapter introduces readers to the discipline
of signal processing and presents several applications of digital signal
processing, including musical sound processing, echo generation, echo
removal, and digital reverberation. A brief introduction to MATLAB
is also provided.

Chapter 2, Discrete-time Signals and Systems: This chapter provides a
brief review of discrete-time signals and systems in the time domain.
Appropriate use of MATLAB functions is demonstrated.

Chapter 3, The Discrete-time Fourier Analysis: This chapter discusses
discrete-time signal and system representation in the frequency domain.
Sampling and reconstruction of analog signals are also presented.

Chapter 4, The z-Transform: This chapter provides signal and system
description in the complex frequency domain. MATLAB techniques
are introduced to analyze z-transforms and to compute inverse z-
transforms. Solutions of difference equations using the z-transform and
MATLAB are provided.

Chapter 5, The Discrete Fourier Transform: This chapter is devoted
to the computation of the Fourier transform and to its efficient
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PREFACE xiii

implementation. The discrete Fourier series is used to introduce the
discrete Fourier transform, and several of its properties are demon-
strated using MATLAB. Topics such as fast convolution and fast
Fourier transform are thoroughly discussed.

Chapter 6, Implementation of Discrete-Time Filters: This chapter dis-
cusses several structures for the implementation of digital filters.
Several useful MATLAB functions are developed for the determination
and implementation of these structures. Lattice and ladder filters are
also introduced and discussed. In addition to considering various fil-
ter structures, we also treat quantization effects when finite-precision
arithmetic is used in the implementation of IIR and FIR filters.

Chapter 7, FIR Filter Design: This chapter and the next introduce the im-
portant topic of digital filer design. Three important design techniques
for FIR filters—namely, window design, frequency sampling design, and
the equiripple filer design—are discussed. Several design examples are
provided using MATLAB.

Chapter 8, IIR Filter Design: Included in this chapter are techniques used
in IIR filter design. The chapter begins with the treatment of some
basic filter types, namely, digital resonators, notch filters, comb filters,
all-pass filters, and digital sinusoidal oscillators. This is followed by
a brief description of the characteristics of three widely used analog
filters. Transformations are described for converting these prototype
analog filters into different frequency-selective digital filters. The chap-
ter concludes with several IIR filter designs using MATLAB.

Chapter 9, Sampling Rate Conversion: This chapter teats the important
problem of sampling rate conversion in digital signal processing. Top-
ics treated include decimation and interpolation by integer factors,
sampling rate conversion by rational factor, and filter structures for
sampling rate conversion.

Chapter 10, Round-off Effects in Digital Filters: The focus of this chapter
is on the effects of finite-precision arithmetic to the filtering aspects
in signal processing. Quantization noise introduced in analog-to-digital
conversion is characterized statistically and the quantization effects in
finite precision multiplication and additions are also modeled statisti-
cally. The effects of these errors in the filter output are characterized as
correlated errors, called limit cycles and as uncorrelated errors, called
round-off noise.

Chapter 11, Applications in Adaptive Filtering: This chapter is the first
of two chapters on projects using MATLAB. Included is an introduc-
tion to the theory and implementation of adaptive FIR filters with
projects in system identification, interference suppression, narrowband
frequency enhancement, and adaptive equalization.
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xiv PREFACE

Chapter 12, Applications in Communications: This chapter focuses on
several projects dealing with waveform representation and coding
and with digital communications. Included is a description of pulse-
code modulation (PCM), differential PCM (DPCM) and adaptive
DPCM (ADPCM), delta modulation (DM) and adaptive DM (ADM),
linear predictive coding (LPC), generation and detection of dual-
tone multifrequency (DTMF) signals, and a description of signal de-
tection applications in binary communications and spread-spectrum
communications.

ABOUT THE SOFTWARE

The book is an outgrowth of our teaching of a MATLAB-based under-
graduate DSP course over several years. Most of the MATLAB functions
discussed in this book were developed in this course. These functions are
collected in the book toolbox called DSPUM and are available online
on the book’s companion website. Many examples in the book contain
MATLAB scripts. Similarly, MATLAB plots were created using scripts.
All these scripts are made available at the companion website for the bene-
fit of students and instructors. Students should study these scripts to gain
insight into MATLAB procedures. We will appreciate any comments, cor-
rections, or compact coding of these functions and scripts. Solutions to
problems and the associated script files will be made available to instruc-
tors adopting the book through the companion website. To access the
book’s companion website and all additional course materials, please visit
www.cengagebrain.com. At the CengageBrain.com home page, search for
the ISBN of your title (from the back cover of your book) using the search
box at the top of the page. This will take you to the product page where
these resources can be found.

Further information about MATLAB and related publications may
be obtained from

The MathWorks, Inc.

24 Prime Park Way

Natick, MA 01760-1500

Phone: (508) 647-7000 Fax: (508) 647-7001
E-mail: info@mathworks.com

WWW: http://www.mathworks.com
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CHAPTER

Introduction

During the past several decades the field of digital signal processing (DSP)
has grown to be important, both theoretically and technologically. A ma-
jor reason for its success in industry is the development and use of low-cost
software and hardware. New technologies and applications in various fields
are now taking advantage of DSP algorithms. This will lead to a greater
demand for electrical and computer engineers with background in DSP.
Therefore, it is necessary to make DSP an integral part of any electrical
engineering curriculum.

Two decades ago an introductory course on DSP was given mainly at
the graduate level. It was supplemented by computer exercises on filter
design, spectrum estimation, and related topics using mainframe (or mini)
computers. However, considerable advances in personal computers and
software during the past two decades have made it necessary to introduce
a DSP course to undergraduates. Since DSP applications are primarily
algorithms that are implemented either on a DSP processor [11] or in
software, a fair amount of programming is required. Using interactive
software, such as MATLAB, it is now possible to place more emphasis
on learning new and difficult concepts than on programming algorithms.
Interesting practical examples can be discussed, and useful problems can
be explored.

With this philosophy in mind, we have developed this book as a com-
panion book (to traditional textbooks like [18, 23]) in which MATLAB is
an integral part in the discussion of topics and concepts. We have chosen
MATLAB as the programming tool primarily because of its wide avail-
ability on computing platforms in many universities across the world.
Furthermore, a low-cost student version of MATLAB has been available
for several years, placing it among the least expensive software products

1
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2 Chapter 1 W INTRODUCTION

for educational purposes. We have treated MATLAB as a computational
and programming toolbox containing several tools (sort of a super calcu-
lator with several keys) that can be used to explore and solve problems
and, thereby, enhance the learning process.

This book is written at an introductory level in order to introduce
undergraduate students to an exciting and practical field of DSP. We
emphasize that this is not a textbook in the traditional sense but a com-
panion book in which more attention is given to problem solving and
hands-on experience with MATLAB. Similarly, it is not a tutorial book in
MATLAB. We assume that the student is familiar with MATLAB and is
currently taking a course in DSP. The book provides basic analytical tools
needed to process real-world signals (a.k.a. analog signals) using digital
techniques. We deal mostly with discrete-time signals and systems, which
are analyzed in both the time and the frequency domains. The analysis
and design of processing structures called filters and spectrum analyzers
are among of the most important aspects of DSP and are treated in great
detail in this book. Two important topics on finite word-length effects and
sampling-rate conversion are also discussed in this book. More advanced
topics in modern signal processing like statistical and adaptive signal pro-
cessing are generally covered in a graduate course. These are not treated
in this book, but it is hoped that the experience gained in using this book
will allow students to tackle advanced topics with greater ease and un-
derstanding. In this chapter we provide a brief overview of both DSP and
MATLAB.

1.1 OVERVIEW OF DIGITAL SIGNAL PROCESSING
i

In this modern world we are surrounded by all kinds of signals in vari-
ous forms. Some of the signals are natural, but most of the signals are
manmade. Some signals are necessary (speech), some are pleasant (mu-
sic), while many are unwanted or unnecessary in a given situation. In an
engineering context, signals are carriers of information, both useful and
unwanted. Therefore extracting or enhancing the useful information from
a mix of conflicting information is the simplest form of signal processing.
More generally, signal processing is an operation designed for extracting,
enhancing, storing, and transmitting useful information. The distinction
between useful and unwanted information is often subjective as well as
objective. Hence signal processing tends to be application dependent.

1.1.1 HOW ARE SIGNALS PROCESSED?
The signals that we encounter in practice are mostly analog signals. These
signals, which vary continuously in time and amplitude, are processed
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Overview of Digital Signal Processing 3

using electrical networks containing active and passive circuit elements.
This approach is known as analog signal processing (ASP)—for example,
radio and television receivers.

Analog signal: z,(t) — | Analog signal processor | — y,(t) :Analog signal

They can also be processed using digital hardware containing adders,
multipliers, and logic elements or using special-purpose microprocessors.
However, one needs to convert analog signals into a form suitable for
digital hardware. This form of the signal is called a digital signal. It takes
one of the finite number of values at specific instances in time, and hence
it can be represented by binary numbers, or bits. The processing of digital
signals is called DSP; in block diagram form it is represented by

Equivalent Analog Signal Processor

digital digital
Analog - | - | PrF | — [ ADC | 57| DSP | =5 | DAC | — | PoF | - |- Analog

Discrete System

The various block elements are discussed as follows.

PrF: This is a prefilter or an antialiasing filter, which conditions the analog
signal to prevent aliasing.

ADC: This is an analog-to-digital converter, which produces a stream of
binary numbers from analog signals.

Digital Signal Processor: This is the heart of DSP and can represent a general-
purpose computer or a special-purpose processor, or digital hardware,
and so on.

DAC: This is the inverse operation to the ADC, called a digital-to-analog
converter, which produces a staircase waveform from a sequence of
binary numbers, a first step toward producing an analog signal.

PoF: This is a postfilter to smooth out staircase waveform into the desired
analog signal.

It appears from the above two approaches to signal processing, analog
and digital, that the DSP approach is the more complicated, containing
more components than the “simpler looking” ASP. Therefore one might
ask, Why process signals digitally? The answer lies in the many advan-
tages offered by DSP.

1.1.2 ADVANTAGES OF DSP OVER ASP

A major drawback of ASP is its limited scope for performing complicated
signal-processing applications. This translates into nonflexibility in pro-
cessing and complexity in system designs. All of these generally lead to
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4 Chapter 1 W INTRODUCTION

expensive products. On the other hand, using a DSP approach, it is pos-
sible to convert an inexpensive personal computer into a powerful signal
processor. Some important advantages of DSP are these:

1. Systems using the DSP approach can be developed using software run-
ning on a general-purpose computer. Therefore DSP is relatively con-
venient to develop and test, and the software is portable.

2. DSP operations are based solely on additions and multiplications, lead-
ing to extremely stable processing capability—for example, stability
independent of temperature.

3. DSP operations can easily be modified in real time, often by simple
programming changes, or by reloading of registers.

4. DSP has lower cost due to VLSI technology, which reduces costs of
memories, gates, microprocessors, and so forth.

The principal disadvantage of DSP is the limited speed of operations
limited by the DSP hardware, especially at very high frequencies. Primar-
ily because of its advantages, DSP is now becoming a first choice in many
technologies and applications, such as consumer electronics, communica-
tions, wireless telephones, and medical imaging.

1.1.3 TWO IMPORTANT CATEGORIES OF DSP
Most DSP operations can be categorized as being either signal analysis
tasks or signal filtering tasks:

Digital Signal
| Analysis ! Digital Filter
Measurements Digital Signal

Signal analysis This task deals with the measurement of signal prop-
erties. It is generally a frequency-domain operation. Some of its applica-
tions are

spectrum (frequency and/or phase) analysis
speech recognition

speaker verification

target detection

Signal filtering This task is characterized by the signal-in signal-out
situation. The systems that perform this task are generally called filters.
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It is usually (but not always) a time-domain operation. Some of the ap-
plications are

removal of unwanted background noise
removal of interference

separation of frequency bands

shaping of the signal spectrum

In some applications, such as voice synthesis, a signal is first analyzed
to study its characteristics, which are then used in digital filtering to
generate a synthetic voice.

1.2 A BRIEF INTRODUCTION TO MATLAB
i

MATLAB is an interactive, matrix-based system for scientific and engi-
neering numeric computation and visualization. Its strength lies in the fact
that complex numerical problems can be solved easily and in a fraction
of the time required by a programming language such as Fortran or C. It
is also powerful in the sense that, with its relatively simple programming
capability, MATLAB can be easily extended to create new commands and
functions.

MATLAB is available in a number of computing environments: PCs
running all flavors of Windows, Apple Macs running OS-X, UNIX/Linux
workstations, and parallel computers. The basic MATLAB program is
further enhanced by the availability of numerous toolboxes (a collection
of specialized functions in a specific topic) over the years. The information
in this book generally applies to all these environments. In addition to the
basic MATLAB product, the Signal Processing toolbox (SP toolbox) is
required for this book. The original development of the book was done us-
ing the professional version 3.5 running under DOS. The MATLAB scripts
and functions described in the book were later extended and made com-
patible with the present version of MATLAB. Furthermore, through the
services of www.cengagebrain.com every effort will be made to preserve
this compatibility under future versions of MATLAB.

In this section, we will undertake a brief review of MATLAB. The
scope and power of MATLAB go far beyond the few topics discussed
in this section. For more detailed tutorial-based discussion, students and
readers new to MATLAB should also consult several excellent reference
books available in the literature, including [10], [7], and [21]. The informa-
tion given in all these references, along with the online MATLAB’s help
facility, usually is sufficient to enable readers to use this book. The best ap-
proach to become familiar with MATLAB is to open a MATLAB session
and experiment with various operators, functions, and commands until
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their use and capabilities are understood. Then one can progress to writ-
ing simple MATLAB scripts and functions to execute a sequence of in-
structions to accomplish an analytical goal.

1.2.1 GETTING STARTED

The interaction with MATLAB is through the command window of its
graphical user interface (GUI). In the command window, the user types
MATLAB instructions, which are executed instantaneously, and the re-
sults are displayed in the window. In the MATLAB command window the
characters “>>” indicate the prompt which is waiting for the user to type
a command to be executed. For example,

>> command;

means an instruction command has been issued at the MATLAB prompt.
If a semicolon (;) is placed at the end of a command, then all output
from that command is suppressed. Multiple commands can be placed on
the same line, separated by semicolons ;. Comments are marked by the
percent sign (%), in which case MATLAB ignores anything to the right
of the sign. The comments allow the reader to follow code more easily.
The integrated help manual provides help for every command through the
fragment

>> help command;

which will provide information on the inputs, outputs, usage, and func-
tionality of the command. A complete listing of commands sorted by
functionality can be obtained by typing help at the prompt.

There are three basic elements in MATLAB: numbers, variables, and
operators. In addition, punctuation marks (,, ;, :, etc.) have special
meanings.

Numbers MATLAB is a high-precision numerical engine and can han-
dle all types of numbers, that is, integers, real numbers, complex numbers,
among others, with relative ease. For example, the real number 1.23 is rep-
resented as simply 1.23 while the real number 4.56 x 107 can be written
as 4.56e7. The imaginary number /—1 is denoted either by 1i or 1j,
although in this book we will use the symbol 1j. Hence the complex num-
ber whose real part is 5 and whose imaginary part is 3 will be written as
5+1j*3. Other constants preassigned by MATLAB are pi for m, inf for
00, and NaN for not a number (for example, 0/0). These preassigned con-
stants are very important and, to avoid confusion, should not be redefined
by users.
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Variables In MATLAB, which stands for MATrix LABoratory, the ba-
sic variable is a matrix, or an array. Hence, when MATLAB operates on
this variable, it operates on all its elements. This is what makes it a pow-
erful and an efficient engine. MATLAB now supports multidimensional
arrays; we will discuss only up to two-dimensional arrays of numbers.

1. Matrix: A matrix is a two-dimensional set of numbers arranged in
rows and columns. Numbers can be real- or complex-valued.

2. Array: This is another name for matrix. However, operations on arrays
are treated differently from those on matrices. This difference is very
important in implementation.

The following are four types of matrices (or arrays):

e Scalar: This is a 1 x 1 matrix or a single number that is denoted by
the variable symbol, that is, lowercase italic typeface like

a = ay1

e Column vector: This is an (N X 1) matrix or a vertical arrangement
of numbers. It is denoted by the vector symbol, that is, lowercase bold
typeface like

ITN1

A typical vector in linear algebra is denoted by the column vector.
e Row vector: This is a (1 x M) matrix or a horizontal arrangement of
numbers. It is also denoted by the vector symbol, that is,

y = [yu]j:l’wM = [yu Y12 - ylM]

A one-dimensional discrete-time signal is typically represented by an
array as a row vector.

e General matrix: This is the most general case of an (N x M) matrix
and is denoted by the matrix symbol, that is, uppercase bold typeface

like
a1l a2 - aiM
G21 G22 "+ A2M
A= [a’ij]izl,...,N;j:I,.“,m =
GN1 GN2 **° ANM

This arrangement is typically used for two-dimensional discrete-time
signals or images.
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MATLAB does not distinguish between an array and a matrix except for
operations. The following assignments denote indicated matrix types in
MATLAB:

[3] is a scalar,

[1,2,3] is a row vector,
[1;2;3] is a column vector, and
[1,2,3;4,5,6] is a matrix.

< X op
1]

MATLAB provides many useful functions to create special matrices.
These include zeros(M,N) for creating a matrix of all zeros, ones(M,N)
for creating matrix of all ones, eye(N) for creating an N x N identity
matrix, etc. Consult MATLAB’s help manual for a complete list.

Operators MATLAB provides several arithmetic and logical operators,
some of which follow. For a complete list, MATLAB’s help manual should
be consulted.

= assignment == equality
+ addition - subtraction or minus
* multiplication .* array multiplication
= power .~ array power
/ division ./ array division
<> relational operators & logical AND
| logical OR ~ logical NOT
> transpose .7 array transpose

We now provide a more detailed explanation on some of these operators.

1.2.2 MATRIX OPERATIONS
Following are the most useful and important operations on matrices.

e Matrix addition and subtraction: These are straightforward oper-
ations that are also used for array addition and subtraction. Care must
be taken that the two matrix operands be ezactly the same size.

e Matrix conjugation: This operation is meaningful only for complex-
valued matrices. It produces a matrix in which all imaginary parts are
negated. It is denoted by A* in analysis and by conj(A) in MATLAB.

e Matrix transposition: This is an operation in which every row (col-
umn) is turned into column (row). Let X be an (N x M) matrix. Then

’

X' =[z;]; j=1,...,M,i=1,...,N

is an (M x N) matrix. In MATLAB, this operation has one additional
feature. If the matrix is real-valued, then the operation produces the
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usual transposition. However, if the matrix is complex-valued, then the
operation produces a complex-conjugate transposition. To obtain just
the transposition, we use the array operation of conjugation, that is,
A.’ will do just the transposition.

e Multiplication by a scalar: This is a simple straightforward
operation in which each element of a matrix is scaled by a constant,
that is,

ab = axb (scalar)
ax = a*x (vector or array)
aX = a*X (matrix)

This operation is also valid for an array scaling by a constant.

e Vector-vector multiplication: In this operation, one has to be care-
ful about matrix dimensions to avoid invalid results. The operation
produces either a scalar or a matrix. Let x be an (N x 1) and y be a
(1 x M) vectors. Then

T 1Y T1Ym
xky=xy= |1 ||y yu] =

TN TNY1 ce TNYM
produces a matrix. If M = N, then

Z1
y*x:>yx:[y1---yM] Sl =Tt 2mYm

(%

e Matrix-vector multiplication: If the matrix and the vector are com-
patible (i.e., the number of matrix-columuns is equal to the vector-rows),
then this operation produces a column vector:

a11 a1p T 1
y=AMAx=>y=Ax= =

aN1 T AN M TM YN

e Matrix-matrix multiplication: Finally, if two matrices are compat-
ible, then their product is well-defined. The result is also a matrix with
the number of rows equal to that of the first matrix and the number
of columns equal to that of the second matrix. Note that the order in
matrix multiplication is very important.
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Array Operations These operations treat matrices as arrays. They
are also known as dot operations because the arithmetic operators are
prefixed by a dot (.), that is, .*, ./, or .".

e Array multiplication: This is an element by element multiplication
operation. For it to be a valid operation, both arrays must be the same

size. Thus we have
x.xy — 1D array

X.*Y — 2D array

e Array exponentiation: In this operation, a scalar (real- or complex-
valued) is raised to the power equal to every element in an array, that is,

a®
a®?
a.'x=
a®N
is an (N x 1) array, whereas
azll a:ElQ e a:ElM
a®21 a®22 ... a*2M
a. X =
ale amN2 e amNM

is an (N x M) array.
e Array transposition: As explained, the operation A.” produces trans-
position of real- or complex-valued array A.

Indexing Operations MATLAB provides very useful and powerful ar-
ray indexing operations using operator :. It can be used to generate se-
quences of numbers as well as to access certain row/column elements of a
matrix. Using the fragment x = [a:b:c], we can generate numbers from
a to ¢ in b increments. If b is positive (negative) then, we get increasing
(decreasing) values in the sequence x.

The fragment x(a:b:c) accesses elements of x beginning with index
a in steps of b and ending at c. Care must be taken to use integer values
of indexing elements. Similarly, the : operator can be used to extract a
submatrix from a matrix. For example, B = A(2:4,3:6) extracts a 3 x 4
submatrix starting at row 2 and column 3.

Another use of the : operator is in forming column vectors from row
vectors or matrices. When used on the right-hand side of the equality (=)
operator, the fragment x=A(:) forms a long column vector x of elements
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of A by concatenating its columns. Similarly, x=A(:,3) forms a vector x
from the third column of A. However, when used on the right-hand side
of the = operator, the fragment A(:)=x reformats elements in x into a
predefined size of A.

Control-Flow MATLAB provides a variety of commands that allow
us to control the flow of commands in a program. The most common
construct is the if-elseif-else structure. With these commands, we can
allow different blocks of code to be executed depending on some condition.
The format of this construct is

if conditioni
commandl
elseif condition2
command?
else
command3
end

which executes statements in command1 if condition-1 is satisfied; other-
wise statements in command? if condition-2 is satisfied, or finally state-
ments in command3.

Another common control flow construct is the for..end loop. It is
simply an iteration loop that tells the computer to repeat some task a
given number of times. The format of a for. .end loop is

for index = values
program statements

end

Although for. .end loops are useful for processing data inside of arrays by
using the iteration variable as an index into the array, whenever possible
the user should try to use MATLAB’s whole array mathematics. This will
result in shorter programs and more efficient code. In some situations the
use of the for. .end loop is unavoidable. The following example illustrates
these concepts.

O EXAMPLE 1.1  Consider the following sum of sinusoidal functions.

L

k: n(27kt), 0<t<1

3
z(t) = sin(2nt) + & sin(67t) + £ sin(107t) Z
k=1

Using MATLAB, we want to generate samples of z(t) at time instances
0:0.01:1. We will discuss three approaches.
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Approach 1

Approach 2

Approach 3
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Here we will consider a typical C or Fortran approach, that is, we will use two
for..end loops, one each on t and k. This is the most inefficient approach in
MATLAB, but possible.

>> t = 0:0.01:1; N = length(t); xt = zeros(1,N);
>> for n = 1:N

>> temp = O;

>> for k = 1:3

>> temp = temp + (1/k)*sin(2*pi*k*t(n));
>> end

>> xt(n) = temp;

>> end

In this approach, we will compute each sinusoidal component in one step as a
vector, using the time vector t = 0:0.01:1 and then add all components using
one for. .end loop.

>> t = 0:0.01:1; xt = zeros(1,length(t));

>> for k = 1:3
>> xt = xt + (1/k)*sin(2*pixk*t);
>> end

Clearly, this is a better approach with fewer lines of code than the first one.
In this approach, we will use matrix-vector multiplication, in which MATLAB
is very efficient. For the purpose of demonstration, consider only four values for
t = [t1,t2,t3, ta]. Then

x(t1) = sin(27t1) + 3 sin(27w3t1) + £ sin(275¢t1)

x(t2) = sin(27t2) + 3 sin(27w3t2) + £ sin(275t2)

x(t3) = sin(27t3) + 3 sin(273t3) + £ sin(275t3)

x(ts) = sin(27ts) + 3 sin(27w3t4) + L sin(275t4)

which can be written in matrix form as

2(t1) sin(27t1) sin(273t1) sin(275¢1)

1
z(t2) sin(2mt2) sin(2m3tz) sin(275t2) | ||
a(ts)| sin(2nt3) sin(2m3ts) sin(275t3) i

5
(t4) sin(2nt4) sin(273ts) sin(275t4)

t

t1 !
=sin |2 | | 135]| |2

t3 1

ta 5
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or after taking transposition

[CL‘(tl) I(tQ) l'(t3) m(t4)}:[1 % %]sin 27 |3 [tl tz t3 t4]
Thus the MATLAB code is

>>t =0:0.01:1; k = 1:3;
>> xt = (1./k)*sin(2*pixk’*t);

Note the use of the array division (1./k) to generate a row vector and ma-
trix multiplications to implement all other operations. This is the most compact
code and the most efficient execution in MATLAB, especially when the number
of sinusoidal terms is very large.

1.2.3 SCRIPTS AND FUNCTIONS

MATLAB is convenient in the interactive command mode if we want to
execute few lines of code. But it is not efficient if we want to write code of
several lines that we want to run repeatedly or if we want to use the code
in several programs with different variable values. MATLAB provides two
constructs for this purpose.

Scripts The first construct can be accomplished by using the so-called
block mode of operation. In MATLAB, this mode is implemented using
a script file called an m-file (with an extension .m), which is only a text
file that contains each line of the file as though you typed them at the
command prompt. These scripts are created using MATLAB’s built-in
editor, which also provides for context-sensitive colors and indents for
making fewer mistakes and for easy reading. The script is executed by
typing the name of the script at the command prompt. The script file must
be in the current directory on in the directory of the path environment.
As an example, consider the sinusoidal function in Example 1.1. A general
form of this function is

K
x(t) = Z cx sin(2mkt) (r.1)
k=1

If we want to experiment with different values of the coefficients ¢; and/or
the number of terms K, then we should create a script file. To implement
the third approach in Example 1.1, we can write a script file

% Script file to implement (1.1)
t = 0:0.01:1; k = 1:2:5; ck = 1./k;
xt = ck * sin(2*pi*k’*t);

Now we can experiment with different values.
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Functions The second construct of creating a block of code is through
subroutines. These are called functions, which also allow us to extend the
capabilities of MATLAB. In fact a major portion of MATLAB is assem-
bled using function files in several categories and using special collections
called toolbozes. Functions are also m-files (with extension .m). A major
difference between script and function files is that the first executable
line in a function file begins with the keyword function followed by an
output-input variable declaration. As an example, consider the compu-
tation of the x(¢) function in Example 1.1 with an arbitrary number of
sinusoidal terms, which we will implement as a function stored as m-file
sinsum.m.

function xt = sinsum(t,ck)

% Computes sum of sinusoidal terms of the form in (1.1)
% x = sinsum(t,ck)

A

K = length(ck); k = 1:K;

ck = ck(:)’; t = t(:)7;

xt = ck * sin(2*pi*k’*t);

The vectors t and ck should be assigned prior to using the sinsum
function. Note that ck(:)’ and t(:)’ use indexing and transposition
operations to force them to be row vectors. Also note the comments im-
mediately following the function declaration, which are used by the help
sinsum command. Sufficient information should be given there for the user
to understand what the function is supposed to do.

1.2.4 PLOTTING

One of the most powerful features of MATLAB for signal and data analysis
is its graphical data plotting. MATLAB provides several types of plots,
starting with simple two-dimensional (2D) graphs to complex, higher-
dimensional plots with full-color capability. We will examine only the 2D
plotting, which is the plotting of one vector versus another in a 2D coor-
dinate system. The basic plotting command is the plot(t,x) command,
which generates a plot of x values versus t values in a separate figure
window. The arrays t and x should be the same length and orientation.
Optionally, some additional formatting keywords can also be provided in
the plot function. The commands xlabel and ylabel are used to add
text to the axis, and the command title is used to provide a title on
the top of the graph. When plotting data, one should get into the habit
of always labeling the axis and providing a title. Almost all aspects of
a plot (style, size, color, etc.) can be changed by appropriate commands
embedded in the program or directly through the GUI.
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The following set of commands creates a list of sample points, eval-
uates the sine function at those points, and then generates a plot of a
simple sinusoidal wave, putting axis labels and title on the plot.

>> t = 0:0.01:2; % sample points from O to 2 in steps of 0.01
>> x = sin(2*pix*t); % Evaluate sin(2 pi t)

>> plot(t,x,’b’); % Create plot with blue line

>> xlabel(’t in sec’); ylabel(’x(t)’); % Label axis

>> title(’Plot of sin(2\pi t)’); % Title plot

The resulting plot is shown in Figure 1.1.

For plotting a set of discrete numbers (or discrete-time signals), we
will use the stem command which displays data values as a stem, that
is, a small circle at the end of a line connecting it to the horizontal axis.
The circle can be open (default) or filled (using the option ’filled’).
Using Handle Graphics (MATLAB’s extensive manipulation of graphics
primitives), we can resize circle markers. The following set of commands
displays a discrete-time sine function using these constructs.

>> n = 0:1:40; % sample index from O to 20

>> x = sin(0.1*pi*n); % Evaluate sin(0.2 pi n)

>> Hs = stem(n,x,’b’,’filled’); % Stem-plot with handle Hs
>> set(Hs, ’markersize’,4); J Change circle size

>> xlabel(’n’); ylabel(’x(n)’); % Label axis

>> title(’Stem Plot of sin(0.2 pi n)’); % Title plot

The resulting plot is shown in Figure 1.2.

MATLAB provides an ability to display more than one graph in the
same figure window. By means of the hold on command, several graphs
can be plotted on the same set of axes. The hold off command stops
the simultaneous plotting. The following MATLAB fragment (Figure 1.3)

Plot of sin(2r t)

AVAN

0

X
o

tin sec

FIGURE 1.1 Plot of the sin(27t) function
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Stem Plot of sin(0.2 & n)
1 - - - - -

a0 1111
o [ I

-1 L L L L L
0 5 10 15 20 25 30 35 40

n

x(n)

FIGURE 1.2 Plot of the sin(0.2r n) sequence

displays graphs in Figures 1.1 and 1.2 as one plot, depicting a “sampling”
operation that we will study later.

>> plot(t,xt,’b’); hold on; % Create plot with blue line
>> Hs = stem(n*0.05,xn,’b’,’filled’); % Stem-plot with handle Hs
>> set(Hs, ’markersize’,4); hold off; % Change circle size

Another approach is to use the subplot command, which displays
several graphs in each individual set of axes arranged in a grid, using the
parameters in the subplot command. The following fragment (Figure 1.4)
displays graphs in Figure 1.1 and 1.2 as two separate plots in two rows.

>> subplot(2,1,1); % Two rows, one column, first plot
>> plot(t,x,’b’); % Create plot with blue line

>> subplot(2,1,2); % Two rows, one column, second plot
>> Hs = stem(n,x,’b’,’filled’); % Stem-plot with handle Hs

Plot of sin(2x t) and its samples
1 T T T

x(t) and x(n)
o

-1 . . .
0 0.5 1 1.5 2

tin sec

FIGURE 1.3 Simultaneous plots of z(t) and x(n)
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Plot of sin(2r t)

1 T T T

0.5Ff i
< O

—-05¢F i

1 . . .
0 0.5 1 15 2

tin sec

Stem Plot of sin(0.2x n)

°’§'rﬂ hri Bl hri B
M ik

1 . . . . .
0 5 10 15 20 25 30 35 40

n

x(n)

FIGURE 1.4 Plots of z(t) and x(n) in two rows

The plotting environment provided by MATLAB is very rich in
its complexity and usefulness. It is made even richer using the handle-
graphics constructs. Therefore, readers are strongly recommended to
consult MATLAB’s manuals on plotting. Many of these constructs will
be used throughout this book.

In this brief review, we have barely made a dent in the enormous
capabilities and functionalities in MATLAB. Using its basic integrated
help system, detailed help browser, and tutorials, it is possible to acquire
sufficient skills in MATLAB in a reasonable amount of time.

1.3 APPLICATIONS OF DIGITAL SIGNAL PROCESSING
i

The field of DSP has matured considerably over the last several decades
and now is at the core of many diverse applications and products. These
include

e speech/audio (speech recognition/synthesis, digital audio, equalization,
etc.),

e image/video (enhancement, coding for storage and transmission,
robotic vision, animation, etc.),

e military/space (radar processing, secure communication, missile guid-
ance, sonar processing, etc.),

e biomedical/health care (scanners, ECG analysis, X-ray analysis, EEG
brain mappers, etc.)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage L earning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



18 Chapter 1 W INTRODUCTION

e consumer electronics (cellular/mobile phones, digital television, digital
camera, Internet voice/music/video, interactive entertainment systems,
etc) and many more.

These applications and products require many interconnected com-
plex steps, such as collection, processing, transmission, analysis, audio/
display of real-world information in near real time. DSP technology has
made it possible to incorporate these steps into devices that are inno-
vative, affordable, and of high quality (for example, iPhone from Apple,
Inc.). A typical application to music is now considered as a motivation
for the study of DSP.

Musical sound processing In the music industry, almost all musical
products (songs, albums, etc.) are produced in basically two stages. First,
the sound from an individual instrument or performer is recorded in an
acoustically inert studio on a single track of a multitrack recording device.
Then, stored signals from each track are digitally processed by the sound
engineer by adding special effects and combined into a stereo recording,
which is then made available either on a CD or as an audio file.

The audio effects are artificially generated using various signal-
processing techniques. These effects include echo generation, reverber-
ation (concert hall effect), flanging (in which audio playback is slowed
down by placing DJ’s thumb on the flange of the feed reel), chorus effect
(when several musicians play the same instrument with small changes
in amplitudes and delays), and phasing (aka phase shifting, in which
an audio effect takes advantage of how sound waves interact with each
other when they are out of phase). These effects are now generated using
digital-signal-processing techniques. We now discuss a few of these sound
effects in some detail.

Echo Generation The most basic of all audio effects is that of time
delay, or echoes. It is used as the building block of more complicated effects
such as reverb or flanging. In a listening space such as a room, sound
waves arriving at our ears consist of direct sound from the source as well
as reflected off the walls, arriving with different amounts of attenuation
and delays.

Echoes are delayed signals, and as such are generated using delay
units. For example, the combination of the direct sound represented by
discrete signal y[n| and a single echo appearing D samples later (which is
related to delay in seconds) can be generated by the equation of the form
(called a difference equation)

z[n] =yln] +ayln - D], laf <1 (1.2)
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where x[n] is the resulting signal and « models attenuation of the di-
rect sound. Difference equations are implemented in MATLAB using the
filter function. Available in MATLAB is a short snippet of Handel’s
hallelujah chorus, which is a digital sound about 9 seconds long, sampled
at 8192 sam/sec. To experience the sound with echo in (1.2), execute
the following fragment at the command window. The echo is delayed by
D = 4196 samples, which amount to 0.5 sec of delay.

load handel; % the signal is in y and sampling freq in Fs
sound(y,Fs); pause(10); % Play the original sound

alpha = 0.9; D = 4196; % Echo parameters

b = [1,zeros(1,D),alphal; % Filter parameters

x = filter(b,1,y); % Generate sound plus its echo
sound(x,Fs); % Play sound with echo

You should be able to hear the distinct echo of the chorus in about a
half second.

Echo Removal After executing this simulation, you may experience
that the echo is an objectionable interference while listening. Again DSP
can be used effectively to reduce (almost eliminate) echoes. Such an echo-
removal system is given by the difference equation

wln] + aw[n — D] = z[n] (1.3)

where z[n] is the echo-corrupted sound signal and w(n] is the output
sound signal, which has the echo (hopefully) removed. Note again that
this system is very simple to implement in software or hardware. Now try
the following MATLAB script on the signal z[n].

w = filter(1,b,x);
sound (w,Fs)

The echo should no longer be audible.
Digital Reverberation Multiple close-spaced echoes eventually lead

to reverberation, which can be created digitally using a somewhat more
involved difference equation

N-1
x[n] = Z a*y[n — kD] (1.9)
k=0

which generates multiple echoes spaced D samples apart with exponen-
tially decaying amplitudes. Another natural sounding reverberation is
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given by
z[n] = ay[n] +y[n — D] + ax[n — D], |aj <1 (1.5)

which simulates a higher echo density.

These simple applications are examples of DSP. Using techniques,
concepts, and MATLAB functions learned in this book you should be
able to simulate these and other interesting sound effects.

1.4 BRIEF OVERVIEW OF THE BOOK
i

The first part of this book, which comprises Chapters 2 through 5, deals
with the signal-analysis aspect of DSP. Chapter 2 begins with basic de-
scriptions of discrete-time signals and systems. These signals and systems
are analyzed in the frequency domain in Chapter 3. A generalization of
the frequency-domain description, called the z-transform, is introduced in
Chapter 4. The practical algorithms for computing the Fourier transform
are discussed in Chapter 5 in the form of the discrete Fourier transform
and the fast Fourier transform.

Chapters 6 through 8 constitute the second part of this book, which is
devoted to the signal-filtering aspect of DSP. Chapter 6 describes various
implementations and structures of digital filters. It also introduces finite-
precision number representation, filter coefficient quantization, and its
effect on filter performance. Chapter 7 introduces design techniques and
algorithms for designing one type of digital filter called finite-duration
impulse response (FIR) filters, and Chapter 8 provides a similar treatment
for another type of filter called infinite-duration impulse response (IIR)
filters. In both chapters only the simpler but practically useful techniques
of filter design are discussed. More advanced techniques are not covered.

Finally, the last part, which consists of the remaining four chapters,
provides important topics and applications in DSP. Chapter 9 deals with
the useful topic of the sampling-rate conversion and applies FIR filter de-
signs from Chapter 7 to design practical sample-rate converters. Chapter
10 extends the treatment of finite-precision numerical representation to
signal quantization and the effect of finite-precision arithmetic on filter
performance. The last two chapters provide some practical applications
in the form of projects that can be done using material presented in the
first 10 chapters. In Chapter 11, concepts in adaptive filtering are intro-
duced, and simple projects in system identification, interference suppres-
sion, adaptive line enhancement, and so forth are discussed. In Chapter 12
a brief introduction to digital communications is presented with projects
involving such topics as PCM, DPCM, and LPC being outlined.
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In all these chapters, the central theme is the generous use and ad-
equate demonstration of MATLAB, which can be used as an effective
teaching as well as learning tool. Most of the existing MATLAB functions
for DSP are described in detail, and their correct use is demonstrated in
many examples. Furthermore, many new MATLAB functions are devel-
oped to provide insights into the working of many algorithms. The authors
believe that this hand-holding approach enables students to dispel fears
about DSP and provides an enriching learning experience.
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CHAPTER

Discrete-time
Signals and
Systems

We begin with the concepts of signals and systems in discrete time. A
number of important types of signals and their operations are introduced.
Linear and shift-invariant systems are discussed mostly because they are
easier to analyze and implement. The convolution and the difference equa-
tion representations are given special attention because of their impor-
tance in digital signal processing and in MATLAB. The emphasis in this
chapter is on the representations and implementation of signals and sys-
tems using MATLAB.

2.1 DISCRETE-TIME SIGNALS
i

Signals are broadly classified into analog and discrete signals. An analog
signal will be denoted by z,(t), in which the variable ¢ can represent any
physical quantity, but we will assume that it represents time in seconds. A
discrete signal will be denoted by x(n), in which the variable n is integer-
valued and represents discrete instances in time. Therefore it is also called
a discrete-time signal, which is a number sequence and will be denoted by
one of the following notations:
z(n)={z(n)} ={..., a:(—l),x(TO),x(l), .
where the up-arrow indicates the sample at n = 0.

22
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In MATLAB we can represent a finite-duration sequence by a row
vector of appropriate values. However, such a vector does not have any
information about sample position n. Therefore a correct representation
of x(n) would require two vectors, one each for z and n. For example, a
sequence z(n) = {2,1,—-1,0,1,4,3,7} can be represented in MATLAB by

T

>> n=[-3,-2,-1,0,1,2,3,4]; x=[2,1,-1,0,1,4,3,7];

Generally, we will use the x-vector representation alone when the sample
position information is not required or when such information is trivial
(e.g. when the sequence begins at n = 0). An arbitrary infinite-duration
sequence cannot be represented in MATLAB due to the finite memory
limitations.

2.1.1 TYPES OF SEQUENCES
We use several elementary sequences in digital signal processing for anal-
ysis purposes. Their definitions and MATLAB representations follow.

1. Unit sample sequence:

1, n=0 _
on) = {0, n#0 _{""O’O’%’O’O’”'}

In MATLAB the function zeros(1,N) generates a row vector of N
zeros, which can be used to implement §(n) over a finite interval. How-
ever, the logical relation n==0 is an elegant way of implementing 6(n).
For example, to implement

1, n=mng

8(n—mno) = {0, n # ng

over the n; <ng<mnso interval, we will use the following MATLAB
function.

function [x,n] = impseq(n0,nl,n2)
% Generates x(n) = delta(n-n0); nl <= n <= n2
g —_

% [x,n] = impseq(n0O,n1,n2)

n = [n1:n2]; x = [(n-n0) == 0];

2. Unit step sequence:
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In MATLAB the function ones (1,N) generates a row vector of IV ones.
It can be used to generate u(n) over a finite interval. Once again an
elegant approach is to use the logical relation n>=0. To implement

1, n>ng
u(n—TLo)Z{O n < ng

over the ni; <ng<no interval, we will use the following MATLAB
function.

function [x,n] = stepseq(nO,nl,n2)

% Generates x(n) = u(n-n0); nl <= n <= n2
N e
% [x,n] = stepseq(n0,n1,n2)

n = [n1:n2]; x = [(@-n0) >= 0];

3. Real-valued exponential sequence:
z(n) =a",Vn; a €R

In MATLAB an array operator “.~” is required to implement a real
exponential sequence. For example, to generate z(n) = (0.9)", 0 <
n < 10, we will need the following MATLAB script:

>>n = [0:10]; x = (0.9)."n;

4. Complex-valued exponential sequence:
x(n) = el7HiwoIn vy

where ¢ produces an attenuation (if <0) or amplification (if >0)
and wg is the frequency in radians. A MATLAB function exp is
used to generate exponential sequences. For example, to generate
x(n) =exp[(2+j3)n],0 <n <10, we will need the following MATLAB
script:

>> n = [0:10]; x = exp((2+3j)*n);

5. Sinusoidal sequence:
x(n) = Acos(won + 60p),Vn

where A is an amplitude and 6, is the phase in radians. A MAT-
LAB function cos (or sin) is used to generate sinusoidal sequences.
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For example, to generate x(n) = 3cos(0.1mn + 7/3) + 2sin(0.57n),
0 <n <10, we will need the following MATLAB script:

>>n = [0:10]; x = 3%cos(0.1*pi*n+pi/3) + 2*sin(0.5%pi*n);

6. Random sequences: Many practical sequences cannot be described
by mathematical expressions like those above. These sequences are
called random (or stochastic) sequences and are characterized by pa-
rameters of the associated probability density functions. In MATLAB
two types of (pseudo-) random sequences are available. The rand (1,N)
generates a length N random sequence whose elements are uniformly
distributed between [0, 1]. The randn(1,N) generates a length N Gaus-
sian random sequence with mean 0 and variance 1. Other random se-
quences can be generated using transformations of the above functions.

7. Periodic sequence: A sequence x(n) is periodic if z(n) = z(n + N),
Vn. The smallest integer IV that satisfies this relation is called the
fundamental period. We will use Z(n) to denote a periodic sequence.
To generate P periods of Z(n) from one period {z(n), 0<n < N-1},
we can copy x(n) P times:

>> xtilde = [x,x,...,x];

But an elegant approach is to use MATLAB’s powerful indexing capa-
bilities. First we generate a matrix containing P rows of x(n) values.
Then we can concatenate P rows into a long row vector using the
construct (:). However, this construct works only on columns. Hence
we will have to use the matrix transposition operator > to provide the
same effect on rows.

>> xtilde = x’ * ones(1,P); % P columns of x; x is a row vector
>> xtilde = xtilde(:); % long column vector
>> xtilde = xtilde’; % long row vector

Note that the last two lines can be combined into one for compact
coding. This is shown in Example 2.1.

2.1.2 OPERATIONS ON SEQUENCES
Here we briefly describe basic sequence operations and their MATLAB
equivalents.

1. Signal addition: This is a sample-by-sample addition given by

{z1(n)} + {z2(n)} = {z1(n) + 22(n)}
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It is implemented in MATLAB by the arithmetic operator “+”. How-
ever, the lengths of 21 (n) and z2(n) must be the same. If sequences are
of unequal lengths, or if the sample positions are different for equal-
length sequences, then we cannot directly use the operator +. We have
to first augment x1(n) and xo(n) so that they have the same position
vector n (and hence the same length). This requires careful attention
to MATLAB'’s indexing operations. In particular, logical operation of
intersection “&”, relational operations like “<=" and “==", and the
find function are required to make x1(n) and z3(n) of equal length.
The following function, called the sigadd function, demonstrates these
operations.

function [y,n] = sigadd(x1,n1,x2,n2)

% implements y(n) = x1(n)+x2(n)

% -

% [y,n] = sigadd(x1,n1,x2,n2)

% y = sum sequence over n, which includes nl and n2

% x1 = first sequence over ni

% x2 = second sequence over n2 (n2 can be different from nl)

n = min(min(nl) ,min(n2)) :max (max(nl) ,max(n2)); % duration of y(n)

yl = zeros(1l,length(n)); y2 = yi; % initialization
y1(find ((n>=min(nl) )& (n<=max(nl))==1))=x1; % x1 with duration of y
y2(£ind ((n>=min(n2))&(n<=max(n2))==1))=x2; % x2 with duration of y
y = ylty2; % sequence addition

Its use is illustrated in Example 2.2.
2. Signal multiplication: This is a sample-by-sample (or “dot”) multi-
plication) given by

{r1(n)} - {z2(n)} = {z1(n)a2(n)}

It is implemented in MATLAB by the array operator .*. Once again,
the similar restrictions apply for the .* operator as for the + operator.
Therefore we have developed the sigmult function, which is similar to
the sigadd function.

function [y,n] = sigmult(x1l,nl,x2,n2)

% implements y(n) = x1(n)*x2(n)

Y —_—

% [y,n] = sigmult(x1,n1,x2,n2)

yA y = product sequence over n, which includes nl and n2

% x1 = first sequence over nl

% x2 = second sequence over n2 (n2 can be different from nl)
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n = min(min(nl) ,min(n2)) :max(max(nl) ,max(n2)); % duration of y(n)

yl = zeros(1,length(n)); y2 = yi; %

y1(£ind ((n>=min(n1))&(n<=max(n1))==1))=x1; % x1 with duration of y
y2(£ind ((n>=min(n2) )& (n<=max(n2))==1) )=x2; % x2 with duration of y
y =yl .*y2; % sequence multiplication

Its use is also given in Example 2.2.
3. Scaling: In this operation each sample is multiplied by a scalar «.

a{z(n)} = {az(n)}
An arithmetic operator (*) is used to implement the scaling operation
in MATLAB.
4. Shifting: In this operation, each sample of z(n) is shifted by an
amount k to obtain a shifted sequence y(n).

y(n) ={z(n—k)}

If we let m = n—k, then n = m+k and the above operation is given by

y(m+k) ={z(m)}
Hence this operation has no effect on the vector x, but the vector n is
changed by adding k to each element. This is shown in the function
sigshift.

function [y,n] = sigshift(x,m,k)
% implements y(n) = x(n-k)

/—
% [y,n] = sigshift(x,m,k)

n = mtk; y = X;

Its use is given in Example 2.2.
5. Folding: In this operation each sample of z(n) is flipped around n = 0
to obtain a folded sequence y(n).

y(n) = {z(-n)}
In MATLAB this operation is implemented by £1iplr (x)function for
sample values and by -fliplr(n) function for sample positions as
shown in the sigfold function.

function [y,n] = sigfold(x,n)
% implements y(n) = x(-n)

°/° ——— —

% [y,n] = sigfold(x,n)

y = fliplr(x); n = -fliplr(n);
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6. Sample summation: This operation differs from signal addition
operation. It adds all sample values of z(n) between n; and na.

ng

Z z(n) =xz(ny) + -+ x(ng)

n=ni

It is implemented by the sum(x(n1:n2)) function.

7. Sample products: This operation also differs from signal multi-
plication operation. It multiplies all sample values of z(n) between
n1 and ns.

[[z() = 2(m1) x - x 2(ny)

It is implemented by the prod(x(n1:n2)) function.
8. Signal energy: The energy of a sequence x(n) is given by

£ =Y alny'(n) = Y lo(n)?

where superscript * denotes the operation of complex conjugation.’
The energy of a finite-duration sequence x(n) can be computed in
MATLAB using

>> Ex
>> Ex

sum(x .* conj(x)); % one approach
sum(abs(x) .~ 2); % another approach

9. Signal power: The average power of a periodic sequence Z(n) with
fundamental period N is given by

1 N-1
_ = ~ 2
Pr=y 2 I

O EXAMPLE 2.1  Generate and plot each of the following sequences over the indicated interval.

a. z(n) =26(n+2)—6(n—4), —-5<n<5.
b. z(n) = nfu(n) —u(n—10)]+10e~ 3"~ [y(n—10) —u(n—20)],0 < n < 20.
c. z(n) = cos(0.04mn) 4+ 0.2w(n), 0 < n < 50, where w(n) is a Gaussian
random sequence with zero mean and unit variance.
d. #(n)=1{...,5,4,3,2,1,5,4,3,2,1,5,4,3,2,1,..}; ~10<n < 9.
T

IThe symbol * denotes many operations in digital signal processing. Its font (roman
or computer) and its position (normal or superscript) will distinguish each operation.
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Solution a. z(n) =26(n+2)—6(n—4), —-5<n<5.

>>n = [-5:5];

>> x = 2ximpseq(-2,-5,5) - impseq(4,-5,5);

>> stem(n,x); title(’Sequence in Problem 2.1a’)
>> xlabel(’n’); ylabel(’x(n)’);

The plot of the sequence is shown in Figure 2.1a.
b. z(n) = n[u(n) — u(n — 10)] 4102310 [y(n — 10) — u(n — 20)],0 < n <
20.

>> n = [0:20]; x1 = n.*(stepseq(0,0,20)-stepseq(10,0,20));

>> x2 = 10*exp(-0.3*(n-10)) . *(stepseq(10,0,20) -stepseq(20,0,20)) ;
>> x = x1+x2;

>> subplot(2,2,3); stem(n,x); title(’Sequence in Problem 2.1b’)
>> xlabel(’n’); ylabel(’x(n)’);

The plot of the sequence is shown in Figure 2.1b.

Sequence in Example 2.1a Sequence in Example 2.1b
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FIGURE 2.1 Sequences in Example 2.1
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c. z(n) = cos(0.04mn) + 0.2w(n), 0<n <50.

>> n = [0:50]; x = cos(0.04*pi*n)+0.2*randn(size(n));
>> subplot(2,2,2); stem(n,x); title(’Sequence in Problem 2.1c’)
>> xlabel(’n’); ylabel(’x(n)’);

The plot of the sequence is shown in Figure 2.1c.
d. #(n) ={..,5,4,3,2,1,5,4,3,2,1,5,4,3,2,1,..}; =10 <n < 9.
T

Note that over the given interval, the sequence Z (n) has four periods.

>> n = [-10:9]; x = [5,4,3,2,1];

>> xtilde = x’ * omnes(1,4); xtilde = (xtilde(:))’;

>> subplot(2,2,4); stem(n,xtilde); title(’Sequence in Problem 2.1d°)
>> xlabel(’n’); ylabel(’xtilde(n)’);

The plot of the sequence is shown in Figure 2.1d. O

O EXAMPLE 2.2 Let z(n) = {1,2,3,4,5,6,7,6,5,4,3,2,1}. Determine and plot the following
T
sequences.

a. z1(n) =2x(n —5) — 3z(n+4)
b. z2(n) =z(3 —n) + z(n) z(n — 2)

Solution The sequence z(n) is nonzero over —2 < n < 10. Hence
>>n = -2:10; x = [1:7,6:-1:1];

will generate z(n).

a. z1(n) =2z(n — 5) — 3z(n +4).
The first part is obtained by shifting z(n) by 5 and the second part by
shifting x(n) by —4. This shifting and the addition can be easily done using
the sigshift and the sigadd functions.

>> [x11,n11] = sigshift(x,n,5); [x12,n12] = sigshift(x,n,-4);

>> [x1,n1] = sigadd(2#x11,n11,-3*x12,n12);

>> subplot(2,1,1); stem(nl,x1); title(’Sequence in Example 2.2a’)
>> xlabel(’n’); ylabel(’x1(n)’);

The plot of z1(n) is shown in Figure 2.2a.

b. z2(n) = (3 — n) + z(n) z(n — 2).
The first term can be written as z(—(n — 3)). Hence it is obtained by first
folding z(n) and then shifting the result by 3. The second part is a multipli-
cation of z(n) and z(n—2), both of which have the same length but different
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Sequence in Example 2.2a
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n
Sequence in Example 2.2b
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n

FIGURE 2.2 Sequences in FExample 2.2

support (or sample positions). These operations can be easily done using the
sigfold and the sigmult functions.

>> [x21,n21] = sigfold(x,n); [x21,n21] = sigshift(x21,n21,3);

>> [x22,n22] = sigshift(x,n,2); [x22,n22] = sigmult(x,n,x22,n22);
>> [x2,n2] = sigadd(x21,n21,x22,n22);

>> subplot(2,1,2); stem(n2,x2); title(’Sequence in Example 2.2b’)
>> xlabel(’n’); ylabel(’x2(n)’);

The plot of z2(n) is shown in Figure 2.2b. O

Example 2.2 shows that the four sig* functions developed in this
section provide a convenient approach for sequence manipulations.

O EXAMPLE 2.3  Generate the complex-valued signal
m(n) _ e(—0A1+jO.3)n7 ~10 <n< 10

and plot its magnitude, phase, the real part, and the imaginary part in four
separate subplots.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage L earning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



32 Chapter 2 ® DISCRETE-TIME SIGNALS AND SYSTEMS
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FIGURE 2.3 Complex-valued sequence plots in Example 2.3

Solution MATLARB script:

>> n = [-10:1:10]; alpha = -0.1+0.3j;

>> x = exp(alpha*n) ;

>> subplot(2,2,1); stem(n,real(x));title(’real part’);xlabel(’n’)

>> subplot(2,2,2); stem(n,imag(x));title(’imaginary part’);xlabel(’n’)

>> subplot(2,2,3); stem(n,abs(x));title(’magnitude part’);xlabel(’n’)

>> subplot(2,2,4); stem(n, (180/pi)*angle(x));title(’phase part’);xlabel(’n’)

The plot of the sequence is shown in Figure 2.3. O

2.1.3 DISCRETE-TIME SINUSOIDS

In the last section we introduced the discrete-time sinusoidal sequence
x(n) = Acos(won + ), for all n as one of the basic signals. This signal
is very important in signal theory as a basis for Fourier transform and
in system theory as a basis for steady-state analysis. It can be conve-
niently related to the continuous-time sinusoid z,(t) = A cos(Qot + o)
using an operation called sampling (Chapter 3), in which continuous-time
sinusoidal values at equally spaced points t = nTs are assigned to x(n).
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The quantity T is called the sampling interval, and Q¢ = wy /T is called
the analog frequency, measured in radians per second.

The fact that n is a discrete variable, whereas ¢ is a continuous
variable, leads to some important differences between discrete-time and
continuous-time sinusoidal signals.

Periodicity in time From our definition of periodicity, the sinusoidal
sequence is periodic if

z[n + N] = Acos(won + woN + 0) = Acos(won + 0y) = z[n] (2.1)

This is possible if and only if wgN = 27k, where k is an integer. This
leads to the following important result (see Problem P2.5):

The sequence x(n) = Acos(won + ) is periodic if and only if fy 2
wo/2m = k/N, that is, fo is a rational number. If k and N are a
pair of prime numbers, then N is the fundamental period of z(n) and
k represents an integer number of periods kT of the corresponding
continuous-time sinusoid.

Periodicity in frequency From the definition of the discrete-time si-
nusoid, we can easily see that

Acos|(wg + k2m)n + 6] = Acos(won + kn2m + 6p)
= Acos(won + o)

since (kn)2m is always an integer multiple of 2. Therefore, we have the
following property:

The sequence x(n) = A cos(won +60) is periodic in wy with fundamen-
tal period 27 and periodic in fy with fundamental period one.

This property has a number of very important implications:

1. Sinusoidal sequences with radian frequencies separated by integer mul-
tiples of 27 are identical.

2. All distinct sinusoidal sequences have frequencies within an interval of
27 radians. We shall use the so-called fundamental frequency ranges

—rm<w<7m or 0<w<21 (2.2)

Therefore, if 0 < wy < 27, the frequencies wy and wy + m27 are
indistinguishable from the observation of the corresponding sequences.

3. Since Acos[wy(n + ng) + 0] = A cos[won + (wong + 0)], a time shift is
equivalent to a phase change.

4. The rate of oscillation of a discrete-time sinusoid increases as wq in-
creases from wg = 0 to wy = m. However, as wq increases from wg = 7
to wg = 2, the oscillations become slower. Therefore, low frequencies
(slow oscillations) are at the vicinity of wy = k27, and high frequencies
(rapid oscillations) are at the vicinity of wy = 7 + k2.
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2.1.4 SOME USEFUL RESULTS
There are several important results in discrete-time signal theory. We will
discuss some that are useful in digital signal processing.

Unit sample synthesis Any arbitrary sequence x(n) can be synthe-
sized as a weighted sum of delayed and scaled unit sample sequences, such

as
[eS)

z(n)= > x(k)é(n—k) (2.3)

k=—o00

‘We will use this result in the next section.

FEven and odd synthesis A real-valued sequence z.(n) is called even
(symmetric) if
ze(—n) = zc(n)

Similarly, a real-valued sequence z,(n) is called odd (antisymmetric) if
xo(_n) = —.’IIO(TL)

Then any arbitrary real-valued sequence x(n) can be decomposed into its
even and odd components

x(n) = ze(n) + xo(n) (2.4)
where the even and odd parts are given by
ze(n) = % [(n) +z(—n)] and z,(n) = % [z(n) — z(—n)] (2.5)

respectively. We will use this decomposition in studying properties of the
Fourier transform. Therefore it is a good exercise to develop a simple
MATLAB function to decompose a given sequence into its even and odd
components. Using MATLAB operations discussed so far, we can obtain
the following evenodd function.

function [xe, xo, m] = evenodd(x,n)
% Real signal decomposition into even and odd parts
N —me -

% [xe, xo, m] = evenodd(x,n)

if any(imag(x) ~= 0)
error(’x is not a real sequence’)
end
m = -fliplr(n);
ml = min([m,n]); m2 = max([m,n]); m = ml:m2;

nm = n(1)-m(1); nl = 1:length(n);
x1 = zeros(1,length(m)); x1(ni+nm) = x; x = x1;
xe = 0.5%(x + fliplr(x)); xo = 0.5%(x - fliplr(x));
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FIGURE 2.4 FEven-odd decomposition in Example 2.4

The sequence and its support are supplied in x and n arrays, respectively.
It first checks if the given sequence is real and determines the support
of the even and odd components in m array. It then implements (2.5)
with special attention to the MATLAB indexing operation. The resulting
components are stored in xe and xo arrays.

O EXAMPLE 24  Let z(n) = u(n) — u(n — 10). Decompose z(n) into even and odd components.

Solution The sequence z(n), which is nonzero over 0 < n < 9, is called a rectangular
pulse. We will use MATLAB to determine and plot its even and odd parts.

>>n = [0:10]; x = stepseq(0,0,10)-stepseq(10,0,10);

>> [xe,xo0,m] = evenodd(x,n);

>> subplot(2,2,1); stem(n,x); title(’Rectangular pulse’)
>> xlabel(’n’); ylabel(’x(n)’); axis([-10,10,0,1.2])

>> subplot(2,2,2); stem(m,xe); title(’Even Part’)

>> xlabel(’n’); ylabel(’xe(n)’); axis([-10,10,0,1.2])

>> subplot(2,2,4); stem(m,x0); title(’0dd Part’)

>> xlabel(’n’); ylabel(’xe(n)’); axis([-10,10,-0.6,0.6])

The plots shown in Figure 2.4 clearly demonstrate the decomposition. []
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A similar decomposition for complex-valued sequences is explored in
Problem P2.5.

The geometric series A one-sided exponential sequence of the form
{a™, n >0}, where « is an arbitrary constant, is called a geometric
series. In digital signal processing, the convergence and expression for the
sum of this series are used in many applications. The series converges for
|a] < 1, while the sum of its components converges to

= 1
Za" — ——, for || <1 (2.6)
= l-a

We will also need an expression for the sum of any finite number of terms
of the series given by

N-1
1— N

Z a” = a , Vo (2.7

—~ 11—«

These two results will be used throughout this book.

Correlations of sequences Correlation is an operation used in many
applications in digital signal processing. It is a measure of the degree to
which two sequences are similar. Given two real-valued sequences x(n) and
y(n) of finite energy, the crosscorrelation of x(n) and y(n) is a sequence
T2y () defined as

reg(l) = Y x(n)y(n -0 (28)
The index ¢ is called the shift or lag parameter. The special case of (2.8)
when y(n) = z(n) is called autocorrelation and is defined by

rex(l) = Y w(n)z(n -0 (2.9)
It provides a measure of self-similarity between different alignments of the
sequence. MATLAB functions to compute auto- and crosscorrelations are
discussed later in the chapter.

2.2 DISCRETE SYSTEMS
i

Mathematically, a discrete-time system (or discrete system for short) is
described as an operator T[] that takes a sequence z(n) (called excitation)
and transforms it into another sequence y(n) (called response). That is,

y(n) = Tlz(n)]
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In DSP we will say that the system processes an input signal into an output
signal. Discrete systems are broadly classified into linear and nonlinear
systems. We will deal mostly with linear systems.

2.2.1 LINEAR SYSTEMS
A discrete system T[] is a linear operator L[] if and only if L[] satisfies
the principle of superposition, namely,

Lla1z1(n) + agx2(n)] = a1 L{x1(n)] + axL[z2(n)], Va1, a2, 1(n), z2(n)
(2.10)

Using (2.3) and (2.10), the output y(n) of a linear system to an arbitrary
input z(n) is given by

y(n)=L[x<n>]=L[ > x(k)é(n—m] = 3 w(W)Lb(n - k)

n=—oo n=—oo

The response L[6(n — k)] can be interpreted as the response of a linear
system at time n due to a unit sample (a well-known sequence) at time k.
It is called an impulse response and is denoted by h(n, k). The output
then is given by the superposition summation

o0

y(n) = > z(k)h(n,k) (2.11)

n=—oo

The computation of (2.11) requires the time-varying impulse response
h(n, k), which in practice is not very convenient. Therefore time-invariant
systems are widely used in DSP.

O EXAMPLE 25 Determine whether the following systems are linear:

L. y(n) =T[z(n)] = 32°(n)
2. yn)=2z(n—2)+5
3. yn)=z(n+1)—xz(n-1)

Solution Let yi(n) = Tlz1(n)] and y2(n) = T[za(n)]. We will determine the
response of each system to the linear combination ayz1(n) + asze(n) and
check whether it is equal to the linear combination ajxq(n) + asx2(n)
where a; and as are arbitrary constants.

1. y(n) = T[x(n)] = 3z%(n): Consider

T[a1z1(n) + azza(n)] = 3[a1z1(n) + asxo(n)]?

3a2x%(n) + 3a3z3(n) + 6ayaszi(n)wa(n)
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which is not equal to
_ .22 2,2
ary1(n) + agy2(n) = 3ajzi(n) + 3azz5(n)
Hence the given system is nonlinear.
2. y(n) =2z(n — 2) + 5: Consider
T[alml(n) + agxg(n)] = 2[a1z1(n — 2) + agza(n —2)] +5
= a1y1(n) + azyz(n) — 5

Clearly, the given system is nonlinear even though the input-output
relation is a straight-line function.
3. y(n)=x(n+1)—=z(1 —n): Consider

Tlarz1(n) + agza(n)] = arz1(n + 1) + agze(n + 1) + a1z1(1 — n)
+ asx2(1 —n)
= a1[z1(n+1) — x1(1 — n)]
+ag[za(n + 1) — 22(1 — n)]
= a1y1(n) + azy2(n)

Hence the given system is linear. O

Linear time-invariant (LTI) system A linear system in which an
input-output pair, z(n) and y(n), is invariant to a shift k in time is called
a linear time-invariant system i.e.,

y(n) = Liz(n)] = Liz(n — k)] = y(n — k) (212)

For an LTI system the L[-] and the shifting operators are reversible as
shown here.

z(n) — — y(n) — | Shift by k| — y(n — k)

x(n) — | Shift by k| — az(n — k) — | L[] | — y(n — k)

O EXAMPLE 2.6 Determine whether the following linear systems are time-invariant.
1. y(n) = Liz(n)] = 10sin(0.17n)z(n)
2. yn)=Lz(n)=zn+1)—z(1l —n)
3. y(n)=Llz(n)] =1z(n)+ tz(n—1)+ tz(n—2)

Solution First we will compute the response yi(n) 2 L{z(n — k)] to the shifted

input sequence. This is obtained by subtracting k£ from the arguments of
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every input sequence term on the right-hand side of the linear transforma-
tion. To determine time-invariance, we will then compare it to the shifted
output sequence y(n — k), obtained after replacing every n by (n — k) on
the right-hand side of the linear transformation.

1. y(n) = L[z(n)] = 10sin(0.17n)z(n): The response due to shifted
input is
yr(n) = L{z(n — k)] = 10sin(0.1mn)z(n — k)
while the shifted output is
y(n — k) =10sin[0.17(n — k)]z(n — k) # yp(n).

Hence the given system is not time-invariant.
2. y(n) = L[z(n)] = (n + 1) — (1 — n): The response due to shifted
input is
ye(n) =Llz(n— k)] =z(n—k) —z(1 —n —k)
while the shifted output is
yn—k)=z(n—k)—z(1—[n—k]) =z(n—k)—xz(l—n+k) # yr(n).

Hence the given system is not time-invariant.
3. y(n) = Llz(n)] = tz(n) + 3z(n — 1) + 22(n — 2): The response due
to shifted input is
ye(n) = Llz(n— k)] = tz(n—k)+ Jz(n—1—k) + ta(n—2—k)
while the shifted output is
yn—k)=ta(n—k)+3z(n—k—1)+ ta(n—k —2) = yu(n)

Hence the given system is time-invariant. O

We will denote an LTI system by the operator LTI [-]. Let z(n) and
y(n) be the input-output pair of an LTI system. Then the time-varying
function h(n, k) becomes a time-invariant function h(n — k), and the out-
put from (2.11) is given by

o0

y(n) = LTI [x(n)] = Y x(k)h(n — k) (2.13)

k=—o00

The impulse response of an LTI system is given by h(n). The mathemati-
cal operation in (2.13) is called a linear convolution sum and is denoted by

y(n) 2 z(n) * h(n) (2.14)
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Hence an LTT system is completely characterized in the time domain by
the impulse response h(n).

z(n) — | h(n) | — y(n) = x(n) * h(n)

We will explore several properties of the convolution in Problem P2.14.

Stability This is a very important concept in linear system theory. The
primary reason for considering stability is to avoid building harmful sys-
tems or to avoid burnout or saturation in the system operation. A system
is said to be bounded-input bounded-output (BIBO) stable if every bounded
input produces a bounded output.

|z(n)] < 0o = |y(n)| < oo,Va,y

An LTI system is BIBO stable if and only if its impulse response is abso-
lutely summable.

BIBO Stability <= > _ |h(n)| < oo (2.15)

Causality This important concept is necessary to make sure that sys-
tems can be built. A system is said to be causal if the output at index ng
depends only on the input up to and including the index ng; that is, the
output does not depend on the future values of the input. An LTI system
is causal if and only if the impulse response

h(n)=0, n<0 (2.16)

Such a sequence is termed a causal sequence. In signal processing, unless
otherwise stated, we will always assume that the system is causal.

2.3 CONVOLUTION

We introduced the convolution operation (2.14) to describe the response
of an LTI system. In DSP it is an important operation and has many other
uses that we will see throughout this book. Convolution can be evaluated
in many different ways. If the sequences are mathematical functions (of
finite or infinite duration), then we can analytically evaluate (2.14) for all
n to obtain a functional form of y(n).

O EXAMPLE 2.7 Let the rectangular pulse z(n) = u(n) — u(n — 10) of Example 2.4 be an input
to an LTT system with impulse response

h(n) = (0.9)" u(n)
Determine the output y(n).
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Input Sequence
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FIGURE 2.5 The input sequence and the impulse response in Example 2.7

Solution The input z(n) and the impulse response h(n) are shown in Figure 2.5. From
(2.14)
9 9
y(n) => (1) (09" P un—k) = (09" (0.9 Fun-k  (217)
k=0 k=0

The sum in (2.17) is almost a geometric series sum except that the term u(n—k)
takes different values depending on n and k. There are three possible conditions
under which u(n — k) can be evaluated.

CASEi n < 0: Then u(n — k) =0, 0 <k <9. Hence from (2.17)
y(n) =0 (2.18)

CASE ii In this case the nonzero values of ©

(n) and h(n) do not overlap.
0<n<9 Thenu(n—k)=1,0<k<n

. Hence from (2.17)

n n

y(n) = (09" (0.9)7F =(0.9"> (097"
k=0 k=0
1— (0‘9)*(n+1)

0T = OL- 09", 0<n<o (219)

= (0.9)"
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Output Sequence
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FIGURE 2.6 The output sequence in Example 2.7

CASEiii In this case the impulse response h(n) partially overlaps the input x(n).
n>9: Then u(n — k) =1, 0 < k <9 and from (2.17)
9
y(n) = (0.9)" Y (0.9)7F
k=0
1—(0.9)71°

1-(0.9)-1
In this last case h(n) completely overlaps x(n).

= (0.9) —10(0.9)"°[1 — (0.9)°], n>9 (2:20)

The complete response is given by (2.18), (2.19), and (2.20). It is shown in
Figure 2.6 which depicts the distortion of the input pulse. U

This example can also be done using a method called graphical convo-
lution, in which (2.14) is given a graphical interpretation. In this method,
h(n — k) is interpreted as a folded-and-shifted version of h(k). The output
y(n) is obtained as a sample sum under the overlap of z(k) and h(n — k).
We use an example to illustrate this.

O EXAMPLE 2.8 Given the following two sequences

z(n) =[3,11,7,0,—1,4,2], —3<n<3; h(n)=[2,3,0,-521, —-1<n<4
T T

determine the convolution y(n) = x(n) * h(n).

Solution In Figure 2.7 we show four plots. The top-left plot shows xz(k) and h(k), the
original sequences. The top-right plot shows (k) and h(—k), the folded version
of h(k). The bottom-left plot shows z(k) and h(—1— k), the folded-and-shifted-
by- —1 version of h(k). Then

D w(k)h(~1— k) =3 x (=5) + 11 x 0+ 7 x 340 x 2 =6 = y(-1)
k

The bottom-right plot shows x(k) and h(2 — k), the folded-and-shifted-by-2
version of h(k), which gives

D w(k)h(2—k) = 11X 1+7x2+0% (=5)+(~1) x 0+4x3+2x2 = 41 = y(2)
k
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FIGURE 2.7 Graphical convolution in Ezample 2.8

Thus we have obtained two values of y(n). Similar graphical calculations can
be done for other remaining values of y(n). Note that the beginning point (first
nonzero sample) of y(n) is given by n = —3 + (—1) = —4, while the end point
(the last nonzero sample) is given by n = 3 4+ 4 = 7. The complete output is
given by

y(n) = {6,31,47,6, 51, —5,41, 18, —22, -3, 8,2}
T

Students are strongly encouraged to verify the above result. Note that the re-
sulting sequence y(n) has a longer length than both the z(n) and h(n) sequences.

O

2.3.1 MATLAB IMPLEMENTATION

If arbitrary sequences are of infinite duration, then MATLAB cannot
be used directly to compute the convolution. MATLAB does provide a
built-in function called conv that computes the convolution between two
finite-duration sequences. The conv function assumes that the two se-
quences begin at n = 0 and is invoked by

>> y = conv(x,h);
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For example, to do the convolution in Example 2.7, we could use

> x = [3, 11, 7, 0, -1, 4, 2]; h = [2, 3, 0, -5, 2, 1];
>> y = conv(x, h)
y =

6 31 a7 6 -51 =5 41 18 -22 =8 8 2
to obtain the correct y(n) values. However, the conv function neither
provides nor accepts any timing information if the sequences have arbi-
trary support. What is needed is a beginning point and an end point of
y(n). Given finite duration x(n) and h(n), it is easy to determine these
points. Let

{I(n)a Ngp <N < na:e} and {h(n), npy <N < nhe}

be two finite-duration sequences. Then referring to Example 2.8 we ob-
serve that the beginning and end points of y(n) are

Tyb = Ngb + Nhb and Nye = Nge + Nhe
respectively. A simple modification of the conv function, called conv_m,

which performs the convolution of arbitrary support sequences can now
be designed.

function [y,ny] = conv_m(x,nx,h,nh)
% Modified convolution routine for signal processing
N e —_—

% [y,nyl = conv_m(x,nx,h,nh)

% [y,ny] = convolution result
% [x,nx] = first signal
% [h,nh] = second signal

nyb = nx(1)+nh(1); nye = nx(length(x)) + nh(length(h));
ny = [nyb:nye]l; y = conv(x,h);

O EXAMPLE 2.9  Perform the convolution in Example 2.8 using the conv_m function.
Solution MATLAB script:
> x = [3, 11, 7, 0, -1, 4, 2]; nx = [-3:3];
> h = [2, 3, 0, -5, 2, 1]; ny = [-1:4];
>> [y,ny] = conv_m(x,nx,h,nh)
7 =
6 31 47 6 -51 -5 41 18 -22 =& 8 2
ny =
-4 -3 -2 -1 0 1 2 3 4 5 6 7
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Hence

y(n) ={6,31,47,6,—51,—5,41,18,—-22, —3,8,2}
T
as in Example 2.8. O

An alternate method in MATLAB can be used to perform the convo-
lution. This method uses a matrix-vector multiplication approach, which
we will explore in Problem P2.17.

2.3.2 SEQUENCE CORRELATIONS REVISITED

If we compare the convolution operation (2.14) with that of the crosscor-
relation of two sequences defined in (2.8), we observe a close resemblance.
The crosscorrelation 7,,(¢) can be put in the form

rya () = y(£) x 2(=0)
with the autocorrelation 7., (£) in the form
Tox(£) = 2 () x 2(—L)

Therefore these correlations can be computed using the conv_m function
if sequences are of finite duration.

[0 EXAMPLE 210 In this example we will demonstrate one application of the crosscorrelation
sequence. Let

z(n) =[3,11,7,0,-1,4, 2]
T

be a prototype sequence, and let y(n) be its noise-corrupted-and-shifted version
y(n) =z(n —2) + w(n)

where w(n) is Gaussian sequence with mean 0 and variance 1. Compute the
crosscorrelation between y(n) and z(n).

Solution From the construction of y(n) it follows that y(n) is “similar” to z(n — 2) and
hence their crosscorrelation would show the strongest similarity at £ = 2. To
test this out using MATLAB, let us compute the crosscorrelation using two
different noise sequences.

% noise sequence 1
> x = [3, 11, 7, 0, -1, 4, 2]; nx=[-3:3]; % given signal x(n)

>> [y,ny] = sigshift(x,nx,2); % obtain x(n-2)
>> w = randn(1,length(y)); nw = ny; % generate w(n)
>> [y,ny] = sigadd(y,ny,w,nw); % obtain y(n) = x(n-2) + w(n)
>> [x,nx] = sigfold(x,nx); % obtain x(-n)
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FIGURE 2.8 C('rosscorrelation sequence with two different noise realizations

>> [rxy,nrxy] = conv_m(y,ny,x,nx); % crosscorrelation
>> subplot(1,1,1), subplot(2,1,1);stem(nrxy,rxy)

>> axis([-5,10,-50,250]) ;xlabel(’lag variable 1’)

>> ylabel(’rxy’);title(’Crosscorrelation: noise sequence 1)
%

% noise sequence 2

> x = [3, 11, 7, 0, -1, 4, 2]; nx=[-3:3]; % given signal x(n)

>> [y,ny] = sigshift(x,nx,2); % obtain x(n-2)

>> w = randn(1,length(y)); nw = ny; % generate w(n)

>> [y,ny] = sigadd(y,ny,w,nw); % obtain y(n) = x(n-2) + w(n)
>> [x,nx] = sigfold(x,nx); % obtain x(-n)

>> [rxy,nrxy] = conv_m(y,ny,x,nx); % crosscorrelation

>> subplot(2,1,2);stem(nrxy,rxy)
>> axis([-5,10,-50,250]) ;xlabel(’lag variable 1’)
>> ylabel(’rxy’);title(’Crosscorrelation: noise sequence 2°’)

From Figure 2.8 we observe that the crosscorrelation indeed peaks at ¢ = 2,
which implies that y(n) is similar to z(n) shifted by 2. This approach can be
used in applications like radar signal processing in identifying and localizing
targets. 0
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Note that the signal-processing toolbox in MATLAB also provides a
function called xcorr for sequence correlation computations. In its sim-
plest form

>> xcorr(x,y)

computes the crosscorrelation between vectors x and y, while
>> xcorr(x)

computes the autocorrelation of vector x. It generates results that are
identical to the one obtained from the proper use of the conv_m function.
However, the xcorr function cannot provide the timing (or lag) informa-
tion (as done by the convm function), which then must be obtained by
some other means.

2.4 DIFFERENCE EQUATIONS
i

An LTT discrete system can also be described by a linear constant coeffi-
cient difference equation of the form

N M
Z ary(n — k) = Z bpx(n —m), Vn (2.21)
k=0 m=0

If ay #0, then the difference equation is of order N. This equation de-
scribes a recursive approach for computing the current output, given the
input values and previously computed output values. In practice this equa-
tion is computed forward in time, from n = —oo to n = oo. Therefore
another form of this equation is

M N
y(n) = Z bmx(n —m) — Z ary(n — k) (2.22)
m=0 k=1

A solution to this equation can be obtained in the form

y(n) =yu(n) +yp(n)

The homogeneous part of the solution, yg(n), is given by

N
yi(n) = e
k=1
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where zg, k= 1,..., N are N roots (also called natural frequencies) of the
characteristic equation N
Z akzlC =0
0

This characteristic equation is important in determining the stability of
systems. If the roots zj satisfy the condition

| <1, k=1,...,N (2.23)

then a causal system described by (2.22) is stable. The particular part
of the solution, yp(n), is determined from the right-hand side of (2.21).
In Chapter 4 we will discuss the analytical approach of solving difference
equations using the z-transform.

2.4.1 MATLAB IMPLEMENTATION

A function called filter is available to solve difference equations nu-
merically, given the input and the difference equation coefficients. In its
simplest form this function is invoked by

y = filter(b,a,x)

where
b= [b0, bl, ..., bM]; a = [a0, al, ..., aN];

are the coefficient arrays from the equation given in (2.21), and x is the
input sequence array. The output y has the same length as input x. One
must ensure that the coefficient a0 not be zero.

To compute and plot impulse response, MATLAB provides the func-
tion impz. When invoked by

h = impz(b,a,n);

it computes samples of the impulse response of the filter at the sample
indices given in n with numerator coefficients in b and denominator co-
efficients in a. When no output arguments are given, the impz function
plots the response in the current figure window using the stem function.
We will illustrate the use of these functions in the following example.

0 EXAMPLE 2.11  Given the following difference equation
y(n) = y(n— 1) +0.9y(n — 2) = a(n); Vn

a. Calculate and plot the impulse response h(n) at n = —20, ..., 100.
b. Calculate and plot the unit step response s(n) at n = —20,...,100.
c. Is the system specified by h(n) stable?
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Solution From the given difference equation the coefficient arrays are
b = [1]; a=[1, -1, 0.9];
a. MATLAB script:

>> b =[1]; a=[1, -1, 0.9]; n = [-20:120];

>> h = impz(b,a,n);

>> subplot(2,1,1); stem(n,h);

>> title(’Impulse Response’); xlabel(’n’); ylabel(’h(n)’)

The plot of the impulse response is shown in Figure 2.9.
b. MATLAB script:

>> x = stepseq(0,-20,120); s = filter(b,a,x);
>> subplot(2,1,2); stem(n,s)
>> title(’Step Response’); xlabel(’n’); ylabel(’s(n)’)

The plot of the unit step response is shown in Figure 2.9.

c. To determine the stability of the system, we have to determine h(n) for all n.
Although we have not described a method to solve the difference equation,

Impulse Response

-1t 1 1 1 1 1 1 |
-20 0 20 40 60 80 100 120
n
Step Response
T T T
2 o 1
15 q 0] o
— . o |7 1 o :J. ® B R D
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FIGURE 2.9 Impulse response and step response plots in Example 2.11
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we can use the plot of the impulse response to observe that h(n) is practically
zero for n > 120. Hence the sum ) |h(n)| can be determined from MATLAB
using

>> sum(abs(h))
ans = 14.8785

which implies that the system is stable. An alternate approach is to use the
stability condition (2.23) using MATLAB’s roots function.

>>z = roots(a); magz = abs(z)
magz = 0.9487
0.9487

Since the magnitudes of both roots are less than one, the system is stable.
O

In the previous section we noted that if one or both sequences in
the convolution are of infinite length, then the conv function cannot be
used. If one of the sequences is of infinite length, then it is possible to use
MATLAB for numerical evaluation of the convolution. This is done using
the filter function as we will see in the following example.

[0 EXAMPLE 2.12 Let us consider the convolution given in Example 2.7. The input sequence is of
finite duration

z(n) = u(n) —u(n — 10)
while the impulse response is of infinite duration
h(n) = (0.9)" u(n)
Determine y(n) = z(n) * h(n).

Solution If the LTI system, given by the impulse response h(n), can be described by a
difference equation, then y(n) can be obtained from the filter function. From
the h(n) expression

(0.9)h(n—1) = (0.9) (0.9)" ' u(n —1) = (0.9)" u(n — 1)
or
h(n) — (0.9) h(n — 1) = (0.9)" u(n) — (0.9)" u(n — 1)
= (0.9)" [u(n) —u(n — 1)] = (0.9)" §(n)

= 6(n

~

The last step follows from the fact that §(n) is nonzero only at n = 0. By
definition h(n) is the output of an LTI system when the input is §(n). Hence
substituting x(n) for 6(n) and y(n) for h(n), the difference equation is

y(n) = 0.9y(n — 1) = z(n)
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Output Sequence
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FIGURE 2.10 OQutput sequence in Example 2.12

Now MATLAB’s filter function can be used to compute the convolution in-
directly.

>> b = [1]; a = [1,-0.9];

>>n = -5:50; x = stepseq(0,-5,50) - stepseq(10,-5,50);
>> y = filter(b,a,x);

>> subplot(2,1,2); stem(n,y); title(’Output sequence’)
>> xlabel(’n’); ylabel(’y(n)’); axis([-5,50,-0.5,8])

The plot of the output is shown in Figure 2.10, which is exactly the same as
that in Figure 2.6. O

In Example 2.12 the impulse response was a one-sided exponential se-
quence for which we could determine a difference equation representation.
This means that not all infinite-length impulse responses can be converted
into difference equations. The above analysis, however, can be extended to
a linear combination of one-sided exponential sequences, which results in
higher-order difference equations. We will discuss this topic of conversion
from one representation to another one in Chapter 4.

2.42 ZERO-INPUT AND ZERO-STATE RESPONSES

In digital signal processing the difference equation is generally solved for-
ward in time from n = 0. Therefore initial conditions on z(n) and y(n)
are necessary to determine the output for n > 0. The difference equation
is then given by

M N
y(n) = Z bmx(n —m) — Zaky(n —-k);n>0 (2.24)
m=0 k=1
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subject to the initial conditions:
{y(n); =N <n < -1} and {z(n); —-M <n < -1}
A solution to (2.24) can be obtained in the form

y(n) =yz1(n) +yzs(n)

where yz;(n) is called the zero-input solution, which is a solution due
to the initial conditions alone (assuming they exist), while the zero-state
solution, yzs(n), is a solution due to input z(n) alone (or assuming that
the initial conditions are zero). In MATLAB another form of the function
filter can be used to solve for the difference equation, given its initial
conditions. We will illustrate the use of this form in Chapter 4.

2.4.3 DIGITAL FILTERS

Filteris a generic name that means a linear time-invariant system designed
for a specific job of frequency selection or frequency discrimination. Hence
discrete-time LTI systems are also called digital filters. There are two
types of digital filters.

FIR filter If the unit impulse response of an LTI system is of finite
duration, then the system is called a finite-duration impulse response (or
FIR) filter. Hence for an FIR filter h(n) = 0 for n < ny and for n > na.
The following part of the difference equation (2.21) describes a causal FIR
filter:

y(n) = Z bmx(n —m) (2.25)

Furthermore, h(0) = by, h(1) = by, ..., h(M) = bps, while all other h(n)’s
are 0. FIR filters are also called nonrecursive or moving average (MA)
filters. In MATLAB FIR filters are represented either as impulse response
values {h(n)} or as difference equation coefficients {b,,} and {ag = 1}.
Therefore to implement FIR filters, we can use either the conv(x,h)
function (and its modification that we discussed) or the filter(b,1,x)
function. There is a difference in the outputs of these two implementations
that should be noted. The output sequence from the conv(x,h) function
has a longer length than both the z(n) and h(n) sequences. On the other
hand, the output sequence from the filter(b,1,x) function has exactly
the same length as the input z(n) sequence. In practice (and especially
for processing signals) the use of the filter function is encouraged.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage L earning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems 53

IIR filter 1If the impulse response of an LTI system is of infinite dura-
tion, then the system is called an infinite-duration impulse response (or
ITR) filter. The following part of the difference equation (2.21):

N
> apy(n — k) = z(n) (2.26)

k=0

describes a recursive filter in which the output y(n) is recursively com-
puted from its previously computed values and is called an autoregressive
(AR) filter. The impulse response of such filter is of infinite duration and
hence it represents an IIR filter. The general equation (2.21) also describes
an IIR filter. It has two parts: an AR part and an MA part. Such an I1IR
filter is called an autoregressive moving average, or an ARMA, filter. In
MATLAB, IIR filters are described by the difference equation coefficients
{bm} and {ax} and are implemented by the filter(b,a,x) function.

2.5 PROBLEMS

P2.1 Generate the following sequences using the basic MATLAB signal functions and the basic
MATLAB signal operations discussed in this chapter. Plot signal samples using the stem
function.

1. z1(n) =36(n+2)+26(n) —6(n—3)+56(n—"7), =5 <n<15.

2. z2(n) =Y ,__ e M§(n —2k), =10 < n < 10.

3. z3(n) = 10u(n) — 5u(n — 5) — 10u(n — 10) 4+ 5u(n — 15).

4. za(n) = %" [u(n + 20) — u(n — 10)].

5. x5(n) = 5[cos(0.497n) + cos(0.517n)], —200 < n < 200. Comment on the waveform
shape.

6. z6(n) = 2sin(0.017n) cos(0.57n), —200 < n < 200. Comment on the waveform shape.

7. z7(n) = 7% sin(0.17n + 7/3), 0 < n < 100. Comment on the waveform shape.

8. xs(n) = %% sin(0.17n), 0 < n < 100. Comment on the waveform shape.

P2.2 Generate the following random sequences and obtain their histogram using the hist
function with 100 bins. Use the bar function to plot each histogram.

1. z1(n) is a random sequence whose samples are independent and uniformly distributed
over [0, 2] interval. Generate 100,000 samples.

2. z2(n) is a Gaussian random sequence whose samples are independent with mean 10 and
variance 10. Generate 10,000 samples.

3. z3(n) = z1(n) + z1(n — 1) where z1(n) is the random sequence given in part 1 above.
Comment on the shape of this histogram and explain the shape.

4. x4(n) = Zi:l yx(n) where each random sequence yi(n) is independent of others with
samples uniformly distributed over [—0.5,0.5]. Comment on the shape of this histogram.
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P2.3 Generate the following periodic sequences and plot their samples (using the stem function)
over the indicated number of periods.

1. Zi(n) ={...,—-2,—-1,0,1,2,.. .}periodic. Plot 5 periods.
T
2. #2(n) = %' [u(n) — u(n — 20]periodic. Plot 3 periods.
3. Z3(n) = sin(0.17n)[u(n) — u(n — 10)]. Plot 4 periods.
4 3 = {123, periodie + L+ 1234 Jperiodie: 0 < < 24 What is the

period of Z4(n )?

P2.4 Let z(n) ={2,4,-3,1,—5,4,7}. Generate and plot the samples (use the stem function) of
T

the following sequences.

1. z1(n) =2z(n — 3) + 3z(n +4) — z(n)

2. z2(n) = 4z(4 + n) + 5z(n + 5) + 2z(n)

3. z3(n) = (n+3) (n—2)+z(1—n)z(n+1)
4. wa(n)

4(n) = 2¢"*"x(n) + cos (0.17n) z (n +2), —10 < n < 10

70T or the sinusoidal sequence cos (won) are periodic if

K
~ where K and N

P2.5 The complex exponential sequence e

) A . . .
the normalized frequency fo = ;;_0 is a rational number; that is, fo =
s

are integers.

1. Prove the above result.

2. Generate exp(0.17n), —100 < n < 100. Plot its real and imaginary parts using the stem
function. Is this sequence periodic? If it is, what is its fundamental period? From the
examination of the plot what interpretation can you give to the integers K and N above?

3. Generate and plot cos(0.1n), —20 < n < 20. Is this sequence periodic? What do you
conclude from the plot? If necessary examine the values of the sequence in MATLAB to
arrive at your answer.

P2.6 Using the evenodd function, decompose the following sequences into their even and odd
components. Plot these components using the stem function.

1. z1(n) ={0,1,2,3,4,5,6,7,8,9}.
T

2. z2(n) = > u(n + 5) — u(n — 10)].
3. x3(n) = cos(0.2rn + 7/4), —20 < n < 20.
4. z4(n) = e 2% sin(0.17n + 7/3), 0 < n < 100.

P2.7 A complex-valued sequence z.(n) is called conjugate-symmetric if z.(n) = z%(—n) and a
complex-valued sequence x,(n) is called conjugate-antisymmetric if z,(n) = —x}(—n).
Then, any arbitrary complex-valued sequence z(n) can be decomposed into
z(n) = ze(n) + zo(n) where z.(n) and x,(n) are given by

[z(n) — " (—n)] (2.27)

N =

Te(n) = % [z(n) + =" (—n)] and zo(n) =

respectively.
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1. Modify the evenodd function discussed in the text so that it accepts an arbitrary
sequence and decomposes it into its conjugate-symmetric and conjugate-antisymmetric
components by implementing (2.27).

2. Decompose the following sequence:

x(n) = 10exp([—0.1 + 50.27]n), 0<n <10

into its conjugate-symmetric and conjugate-antisymmetric components. Plot their real
and imaginary parts to verify the decomposition. (Use the subplot function.)

P2.8 The operation of signal dilation (or decimation or down-sampling) is defined by
y(n) = z(nM)
in which the sequence z(n) is down-sampled by an integer factor M. For example, if

z(n)={...,-2,4,3,-6,5,-1,8,...}
T

then the down-sampled sequences by a factor 2 are given by

y(n) ={...,-2,3,5,8,...}
T
1. Develop a MATLAB function dnsample that has the form

function [y,m] = dnsample(x,n,M)
% Downsample sequence x(n) by a factor M to obtain y(m)

to implement the above operation. Use the indexing mechanism of MATLAB with
careful attention to the origin of the time axis n = 0.

2. Generate z(n) = sin(0.1257n), — 50 <n < 50. Decimate z(n) by a factor of 4 to
generate y(n). Plot both z(n) and y(n) using subplot and comment on the results.
3. Repeat the above using x(n) = sin(0.57n), — 50 < n < 50. Qualitatively discuss the

effect of down-sampling on signals.

P2.9 Using the conv_m function, determine the autocorrelation sequence rq,(¢) and the
crosscorrelation sequence 74, (¢) for the following sequences.

z(n) = (0.9)", 0<n<20; y(n) =(0.8)"", —20<n<0
Describe your observations of these results.

P2.10 In a certain concert hall, echoes of the original audio signal z(n) are generated due to the
reflections at the walls and ceiling. The audio signal experienced by the listener y(n) is a
combination of z(n) and its echoes. Let

y(n) = z(n) + ax(n — k)

where k is the amount of delay in samples and « is its relative strength. We want to
estimate the delay using the correlation analysis.
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1. Determine analytically the crosscorrelation ry;(¢) in terms of the autocorrelation 74 (¢).
2. Let z(n) = cos(0.2mn) 4+ 0.5 cos(0.67n), a = 0.1, and k = 50. Generate 200 samples of
y(n) and determine its crosscorrelation. Can you obtain o and k by observing ry.(¢)?

P2.11 Consider the following discrete-time systems:

Ti[e(n) = a(n)u(n) Tofo(n) = a(n) + na(n + 1)
Tyo(n)] = 2(n) + %Jc(n _9)— %m(n “3)2@n)  Tale(n)]= X0 2u(k)
Ts[z(n)] = z(2n) Ts[z(n)] = round[z(n)]

where round[-] denotes rounding to the nearest integer.

1. Use (2.10) to determine analytically whether these systems are linear.

2. Let z1(n) be a uniformly distributed random sequence between [0, 1] over 0 < n < 100,
and let x2(n) be a Gaussian random sequence with mean 0 and variance 10 over
0 < n < 100. Using these sequences, verify the linearity of these systems. Choose any
values for constants a1 and a2 in (2.10). You should use several realizations of the above
sequences to arrive at your answers.

P2.12 Consider the discrete-time systems given in Problem P2.11.

1. Use (2.12) to determine analytically whether these systems are time-invariant.

2. Let z(n) be a Gaussian random sequence with mean 0 and variance 10 over 0 < n < 100.
Using this sequence, verify the time invariance of the above systems. Choose any values
for sample shift £ in (2.12). You should use several realizations of the above sequence to
arrive at your answers.

P2.13 For the systems given in Problem P2.11, determine analytically their stability and causality.
P2.14 The linear convolution defined in (2.14) has several properties:

z1(n) * z2(n) = z1(n) * z2(n) : Commutation

)
[21(n) * 22(n)] * z3(n)
]
)

z1(n) * [x2(n) * z3(n)] : Association

2.28
z1(n) * [z2(n) + z3(n) 229)

z(n) *8(n —no

z1(n) * z2(n) + z1(n) * zs(n) : Distribution

z(n —no) : Identity

1. Analytically prove these properties.
2. Using the following three sequences, verify the above properties.

z1(n) = cos(mn/4)[u(n + 5) — u(n — 25)]
z2(n) = ( 9)""[u(n) — u(n — 20)]
z3(n) = round[5w(n)], —10 < n < 10; where w(n) is uniform over [—1, 1]

Use the conv_m function.

P2.15 Determine analytically the convolution y(n) = x(n) * h(n) of the following sequences, and
verify your answers using the conv_m function.

J3(’”’) = {27 _47 5’ 37 _17 _27 6}3 h(n) = {1a _17 17 _17 1}
T T
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2. z(n) ={1,1,0,1,1}, h(n) = {1,-2,-3,4}

T T
3. z(n) = (1/4) " u(n+ 1) —u(n —4)], h(n) = u(n) — u(n — 5)
4. z(n) = n/4ju(n) —u(n — 6)], h(n) = 2[u(n +2) — u(n — 3)]

P2.16 Let z(n) = (0.8)"u(n), h(n) = (—0.9)"u(n), and y(n) = h(n) * z(n). Use 3 columns and 1
row of subplots for the following parts.

1. Determine y(n) analytically. Plot first 51 samples of y(n) using the stem function.

2. Truncate z(n) and h(n) to 26 samples. Use conv function to compute y(n). Plot y(n)
using the stem function. Compare your results with those of part 1.

3. Using the filter function, determine the first 51 samples of z(n) * h(n). Plot y(n) using
the stem function. Compare your results with those of parts 1 and 2.

P2.17 When the sequences z(n) and h(n) are of finite duration N, and Ny, respectively, then
their linear convolution (2.13) can also be implemented using matriz-vector multiplication.
If elements of y(n) and z(n) are arranged in column vectors x and y respectively, then from
(2.13) we obtain

y = Hx

where linear shifts in h(n — k) for n =0,..., N — 1 are arranged as rows in the matrix H.
This matrix has an interesting structure and is called a Toeplitz matrix. To investigate this
matrix, consider the sequences

m(n) = {172737475} and h(n) = {67 778,9}
T 1

1. Determine the linear convolution y(n) = h(n) * z(n).

2. Express z(n) as a 5 X 1 column vector x and y(n) as a 8 x 1 column vector y. Now
determine the 8 x 5 matrix H so that y = Hx.

3. Characterize the matrix H. From this characterization can you give a definition of a
Toeplitz matrix? How does this definition compare with that of time invariance?

4. What can you say about the first column and the first row of H?

P2.18 MATLAB provides a function called toeplitz to generate a Toeplitz matrix, given the first
row and the first column.

1. Using this function and your answer to Problem P2.17, part 4, develop another MATLAB
function to implement linear convolution. The format of the function should be

function [y,H]=conv_tp(h,x)

% Linear Convolution using Toeplitz Matrix
% -
% Ly,H] = conv_tp(h,x)

% y = output sequence in column vector form

% H = Toeplitz matrix corresponding to sequence h so that y = Hx
% h = Impulse response sequence in column vector form

% x input sequence in column vector form

2. Verify your function on the sequences given in Problem P2.17.
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58 Chapter 2 ® DISCRETE-TIME SIGNALS AND SYSTEMS

P2.19 A linear and time-invariant system is described by the difference equation
y(n) — 0.5y(n — 1) + 0.25y(n — 2) = z(n) + 2z(n — 1) + z(n — 3)

1. Using the filter function, compute and plot the impulse response of the system over
0 <n < 100.

2. Determine the stability of the system from this impulse response.

3. If the input to this system is z(n) = [5 + 3 cos(0.2mn) + 4sin(0.67n)] u(n), determine the
response y(n) over 0 < n < 200 using the filter function.

P2.20 A “simple” digital differentiator is given by
y(n) = z(n) —z(n—1)

which computes a backward first-order difference of the input sequence. Implement this
differentiator on the following sequences, and plot the results. Comment on the
appropriateness of this simple differentiator.

1. x(n) =5 [u(n) — u(n — 20)]: a rectangular pulse
2. z(n) =nfu(n) — u(n — 10)] + (20 — n) [u(n — 10) — u(n — 20)]: a triangular pulse

3. z(n) =sin (2—5

) [u(n) — u(n — 100)]: a sinusoidal pulse
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CHAPTER

The Discrete-time
Fourier Analysis

We have seen how a linear and time-invariant system can be represented
using its response to the unit sample sequence. This response, called the
unit impulse response h(n), allows us to compute the system response to
any arbitrary input x(n) using the linear convolution:

2(n) — [A(n) | — y(n) = h(n) < 2(n)

This convolution representation is based on the fact that any signal
can be represented by a linear combination of scaled and delayed unit
samples. Similarly, we can also represent any arbitrary discrete signal
as a linear combination of basis signals introduced in Chapter 2. Each
basis signal set provides a new signal representation. Each representation
has some advantages and some disadvantages depending upon the type
of system under consideration. However, when the system is linear and
time-invariant, only one representation stands out as the most useful. It
is based on the complex exponential signal set {€/“"} and is called the
discrete-time Fourier transform.

3.1 THE DISCRETE-TIME FOURIER TRANSFORM (DTFT)
i

If 2(n) is absolutely summable, that is, >->_|z(n)| < co, then its discrete-

time Fourier transform is given by
o0

X() 2 Flain)] = Y a(n)e?m (3.1)

n=—oo

59
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60 Chapter 3 W THE DISCRETE-TIME FOURIER ANALYSIS

The inverse discrete-time Fourier transform (IDTFT) of X (e/) is given
by

2(n) & FUX (%)) = % / X (&%) el (32)

The operator F[-] transforms a discrete signal x(n) into a complex-valued
continuous function X (e*) of real variable w, called a digital frequency,
which is measured in radians/sample.

O EXAMPLE 3.1  Determine the discrete-time Fourier transform of z(n) = (0.5)" u(n).

Solution The sequence z(n) is absolutely summable; therefore its discrete-time Fourier
transform exists.

X(e) =Y w(n)e " =" (0.5)" e "

oo

i 1 el
_ Jwan __ _
- 203(0'56 ) =T 050 ~ @ 05

g
O EXAMPLE 3.2 Determine the discrete-time Fourier transform of the following finite-duration
sequence:
z(n) ={1,2,3,4,5}
T
Solution Using definition (3.1),
X(ej“’) = Zx(n)efj“m =Y 424 3¢9 4 47 4 5T

— 00

O

Since X (e’*) is a complex-valued function, we will have to plot its
magnitude and its angle (or the real and the imaginary part) with respect
to w separately to visually describe X (e/*). Now w is a real variable
between —oo and oo, which would mean that we can plot only a part of the
X (e7*) function using MATLAB. Using two important properties of the
discrete-time Fourier transform, we can reduce this domain to the [0, 7]
interval for real-valued sequences. We will discuss other useful properties
of X (e*) in the next section.

3.1.1 TWO IMPORTANT PROPERTIES
We will state the following two properties without proof.
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1. Periodicity: The discrete-time Fourier transform X (e/) is periodic
in w with period 2.

X(ejw) _ X(ej[w+27r])
Implication: We need only one period of X (e/*) (i.e., w €[0,27], or
[—m, 7], etc.) for analysis and not the whole domain —co < w < 0.
2. Symmetry: For real-valued z(n), X (e/*) is conjugate symmetric.

X(e™9¥) = X*(e?¥)
Re[X (e77%)] = Re[X(e/*)] (even symmetry)
Im[X (e77¥)] = —Im[X(e/*)] (odd symmetry)
| X (e 7¥)| = |X(e’)| (even symmetry)

/X(e7%) = —/X(e’*) (0odd symmetry)

Implication: To plot X (e“), we now need to consider only a half
period of X (e/¥). Generally, in practice this period is chosen to be
w € [0,7].

3.1.2 MATLAB IMPLEMENTATION
If 2(n) is of infinite duration, then MATLAB cannot be used directly
to compute X (e/*) from x(n). However, we can use it to evaluate the
expression X (e/*) over [0, 7] frequencies and then plot its magnitude and
angle (or real and imaginary parts).

O EXAMPLE 3.3 Evaluate X(ej“’) in Example 3.1 at 501 equispaced points between [0, 7] and
plot its magnitude, angle, real, and imaginary parts.

Solution MATLAB script:

>> w = [0:1:500]*pi/500; % [0, pil axis divided into 501 points.

>> X = exp(j*w) ./ (exp(j*w) - 0.5*ones(1,501));

>> magX = abs(X); angX = angle(X); realX = real(X); imagX = imag(X);

>> subplot(2,2,1); plot(w/pi,magX); grid

>> xlabel(’frequency in pi units’); title(’Magnitude Part’); ylabel(’Magnitude’)
>> subplot(2,2,3); plot(w/pi,angX); grid

>> xlabel (’frequency in pi units’); title(’Angle Part’); ylabel(’Radians’)

>> subplot(2,2,2); plot(w/pi,realX); grid

>> xlabel(’frequency in pi units’); title(’Real Part’); ylabel(’Real’)

>> subplot(2,2,4); plot(w/pi,imagX); grid

>> xlabel(’frequency in pi units’); title(’Imaginary Part’); ylabel(’Imaginary’)
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FIGURE 3.1 Plots in Example 3.3

The resulting plots are shown in Figure 3.1. Note that we divided the w array by
pi before plotting so that the frequency axes are in the units of 7 and therefore
easier to read. This practice is strongly recommended. O

If 2(n) is of finite duration, then MATLAB can be used to compute
X (e/*) numerically at any frequency w. The approach is to implement
(3.1) directly. If, in addition, we evaluate X (¢’“) at equispaced frequen-
cies between [0, 7], then (3.1) can be implemented as a matriz-vector mul-
tiplication operation. To understand this, let us assume that the sequence
x(n) has N samples between ny < n < ny (i.e., not necessarily between
[0, N —1]) and that we want to evaluate X (e/*) at

AN T

wp = 35k, k=0,1,....M

which are (M + 1) equispaced frequencies between [0, 7]. Then (3.1) can
be written as

N
X(elok) =3 e Mk (ny) k=0,1,...,M
=1
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When {z (ng)} and {X(e?“*)} are arranged as column vectors x and X,

respectively, we have
X =Wx (3.3)

where W is an (M + 1) x N matrix given by

w2 {e_j(”/M)kW; n; <n < ny, kzO,l,...,M}

In addition, if we arrange {k} and {n¢} as row vectors k and n respectively,
then

W= o (w00

In MATLAB we represent sequences and indices as row vectors; therefore
taking the transpose of (3.3), we obtain

X =xT {exp (—j%nTk)} (3.9)

Note that nTk is an N x (M + 1) matrix. Now (3.4) can be implemented
in MATLAB as follows.

>> k = [0:M]; n = [n1:n2];
>> X = x * (exp(-j*pi/M)) .~ (n’*k);
O EXAMPLE 3.4 Numerically compute the discrete-time Fourier transform of the sequence z(n)

given in Example 3.2 at 501 equispaced frequencies between [0, 7].

Solution MATLARB script:

> n = -1:3; x = 1:5; k = 0:500; w = (pi/500)*k;

>> X = x * (exp(-j*pi/500)) .~ (n’*k);

>> magX = abs(X); angX = angle(X);

>> realX = real(X); imagX = imag(X);

>> subplot(2,2,1); plot(k/500,magX);grid

>> xlabel(’frequency in pi units’); title(’Magnitude Part’)
>> subplot(2,2,3); plot(k/500,angX/pi);grid

>> xlabel(’frequency in pi units’); title(’Angle Part’)

>> subplot(2,2,2); plot(k/500,realX);grid

>> xlabel(’frequency in pi units’); title(’Real Part’)

>> subplot(2,2,4); plot(k/500,imagX);grid

>> xlabel(’frequency in pi units’); title(’Imaginary Part’)

The frequency-domain plots are shown in Figure 3.2. Note that the angle plot
is depicted as a discontinuous function between —m and w. This is because the
angle function in MATLAB computes the principal angle. O
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FIGURE 3.2 Plots in Example 3.4

The procedure of Example 3.4 can be compiled into a MATLAB func-
tion, say a dtft function, for ease of implementation. This is explored in
Problem P3.1. This numerical computation is based on definition (3.1).
It is not the most elegant way of numerically computing the discrete-
time Fourier transform of a finite-duration sequence. In Chapter 5 we
will discuss in detail the topic of a computable transform called the dis-
crete Fourier transform (DFT) and its efficient computation called the
fast Fourier transform (FFT). Also there is an alternate approach based
on the z-transform using the MATLAB function freqz, which we will dis-
cuss in Chapter 4. In this chapter we will continue to use the approaches
discussed so far for calculation as well as for investigation purposes.

In the next two examples we investigate the periodicity and symmetry
properties using complex-valued and real-valued sequences.

O EXAMPLE 35 Let 2(n) = (0.9exp (j7/3))", 0 < n < 10. Determine X (e/*) and investigate
its periodicity.

Solution Since x(n) is complex-valued, X (e’*) satisfies only the periodicity property.
Therefore it is uniquely defined over one period of 27. However, we will evaluate
and plot it at 401 frequencies over two periods between [—27, 27] to observe its
periodicity.
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FIGURE 3.3 Plots in Example 3.5

MATLAB script:

>> n = 0:10; x = (0.9*%exp(j*pi/3)). n;

>> k = -200:200; w = (pi/100)*k;

>> X = x * (exp(-j*pi/100)) .~ (n’*k);

>> magX = abs(X); angX =angle(X);

>> subplot(2,1,1); plot(w/pi,magX);grid

>> xlabel(’frequency in units of pi’); ylabel(’|X|’)

>> title(’Magnitude Part’)

>> subplot(2,1,2); plot(w/pi,angX/pi);grid

>> xlabel(’frequency in units of pi’); ylabel(’radians/pi’)
>> title(’Angle Part’)

From the plots in Figure 3.3 we observe that X(ejw) is periodic in w but is not
conjugate-symmetric. O

O EXAMPLE 3.6  Let z(n) = (0.9)", —10 < n < 10. Investigate the conjugate-symmetry property
of its discrete-time Fourier transform.
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FIGURE 3.4 Plots in Example 3.6

Solution Once again we will compute and plot X (e’*) over two periods to study its
symmetry property.

MATLAB script:

>>n = -5:5; x = (-0.9)."n;

>> k = -200:200; w = (pi/100)*k; X = x * (exp(-j*pi/100)) .~ (n’*k);
>> magX = abs(X); angX =angle(X);

>> subplot(2,1,1); plot(w/pi,magX);grid; axis([-2,2,0,15])

>> xlabel(’frequency in units of pi’); ylabel(’|X|’)

>> title(’Magnitude Part’)

>> subplot(2,1,2); plot(w/pi,angX/pi);grid; axis([-2,2,-1,1])

>> xlabel(’frequency in units of pi’); ylabel(’radians/pi’)

>> title(’Angle Part’)

From the plots in Figure 3.4 we observe that X (¢?“) is not only periodic in w
but is also conjugate-symmetric. Therefore for real sequences we will plot their
Fourier transform magnitude and angle graphs from 0 to . O

3.1.3 SOME COMMON DTFT PAIRS
The discrete-time Fourier transforms of the basic sequences discussed in
Chapter 2 are very useful. The discrete-time Fourier transforms of some
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TABLE 3.1 Some common DTFT pairs

Signal Type Sequence x(n) DTFT X(ej“’)7 —rT<w<T
Unit impulse 6(n) 1

Constant 1 216 (w)

Unit step u(n) ﬁ + 1o (w)
Causal exponential a™u(n) ﬁ
Complex exponential eJwon 2m6(w — wp)

Cosine cos(won) 7[6(w — wo) + 6(w + wp)]
Sine sin(won)  j7[6(w + wo) — 6(w — wo)]
Double exponential al™u(n) Lo

1 —2acos(w) + a?

Note: Since X (ej“) is periodic with period 27, expressions over only
the primary period of —7 < w < 7 are given.

of these sequences can be easily obtained using the basic definitions (3.1)
and (3.2). These transform pairs and those of few other pairs are given
in Table 3.1. Note that, even if sequences like unit step u(n) are not
absolutely summable, their discrete-time Fourier transforms exist in the
limiting sense if we allow impulses in the Fourier transform. Such se-
quences are said to have finite power, that is, Y. |z(n)|? < oc. Using
this table and the properties of the Fourier transform (discussed in Sec-
tion 3.2), it is possible to obtain discrete-time Fourier transform of many
more sequences.

3.2 THE PROPERTIES OF THE DTFT
i

In the previous section, we discussed two important properties that
we needed for plotting purposes. We now discuss the remaining useful
properties, which are given below without proof. Let X (e/“) be the
discrete-time Fourier transform of z(n).

1. Linearity: The discrete-time Fourier transform is a linear transforma-
tion; that is,

Flazi(n) 4+ Bra(n)] = oF [x1(n)] + BF [z2(n)] (3.5)

for every «, 8, z1(n), and xa(n).
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2. Time shifting: A shift in the time domain corresponds to the phase
shifting.

Flz(n — k)] = X (e/9)e Ik (3.6)

3. Frequency shifting: Multiplication by a complex exponential corre-
sponds to a shift in the frequency domain.

F [z(n)edvon] = X (ed@mw0)) 3.7)

4. Conjugation: Conjugation in the time domain corresponds to the
folding and conjugation in the frequency domain.

Flz*(n)] = X*(e™7¥) (3.8)

5. Folding: Folding in the time domain corresponds to the folding in the
frequency domain.

Flz(—n)] = X(e ) (3.9)

6. Symmetries in real sequences: We have already studied the conju-
gate symmetry of real sequences. These real sequences can be decom-
posed into their even and odd parts, as discussed in Chapter 2.

2(n) = 2.(n) + 20(n)

Then

F[ze(n)] = Re [X (/)]
A (3.10)
Flzo(n)] = jIm [X(ej“’)]

Implication: If the sequence z(n) is real and even, then X (e/*) is
also real and even. Hence only one plot over [0, ] is necessary for its
complete representation.

A similar property for complex-valued sequences is explored in
Problem P3.7.

7. Convolution: This is one of the most useful properties that makes
system analysis convenient in the frequency domain.

Fla1(n) * xa(n)] = Flz1(n)] F [z2(n)] = X1 (™) Xa(e’*)  (3.11)
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8. Multiplication: This is a dual of the convolution property.

Fler()-aa(0)] = Floa(] @ Flra()] £ o= [ X1 X0
(3.12)

This convolution-like operation is called a periodic convolution and
hence denoted by @ It is discussed (in its discrete form) in
Chapter 5.

9. Energy: The energy of the sequence x(n) can be written as

£ = Yl = o / X () P (3.13)

X (e7)[? .
= | ——"—dw (for real sequences using even symmetry)
™
0

This is also known as Parseval’s theorem. From (3.13) the energy den-
sity spectrum of x(n) is defined as

o [X(e)?
B ™

D, (w)

Then the energy of z(n) in the [wy,ws] band is given by

(3.14)

w2
/@m(w)dw, O0<wi <wy <7

In the next several examples we will verify some of these properties
using finite-duration sequences. We will follow our numerical procedure
to compute discrete-time Fourier transforms in each case. Although this
does not analytically prove the validity of each property, it provides us
with an experimental tool in practice.

O EXAMPLE 3.7 In this example we will verify the linearity property (3.5) using real-valued finite-
duration sequences. Let z1(n) and z2(n) be two random sequences uniformly
distributed between [0,1] over 0 < n < 10. Then we can use our numerical
discrete-time Fourier transform procedure as follows.

MATLAB script:

>> x1 = rand(1,11); x2 = rand(1,11); n = 0:10;

>> alpha = 2; beta = 3; k = 0:500; w = (pi/500)*k;

>> X1 = x1 * (exp(-j*pi/500)). (n’*k); % DTFT of x1

>> X2 = x2 * (exp(-j*pi/500))."(n’*k); % DTFT of x2

>> x = alpha*x1l + beta*x2; % Linear combination of x1 & x2
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>> X = x * (exp(-j*pi/500)) .  (n’*k); % DTFT of x
>> Y, verification
>> X_check = alpha*X1l + beta*X2; % Linear Combination of X1 & X2
>> error = max(abs(X-X_check)) % Difference
error =
7.1054e-015

Since the maximum absolute error between the two Fourier transform arrays
is less than 107 !*, the two arrays are identical within the limited numerical
precision of MATLAB. O

([ EXAMPLE 3.8 Let z(n) be a random sequence uniformly distributed between [0, 1] over 0 <
n < 10 and let y(n) = x(n — 2). Then we can verify the sample shift property
(3.6) as follows.

>> x = rand(1,11); n = 0:10;
>> k = 0:500; w = (pi/500)*k;
>> X = x * (exp(-j*pi/500)) .~ (n’*k); % DTFT of x

>> 7}, signal shifted by two samples
>> y = x; m = nt+2;

>> Y =y * (exp(-j*pi/500)) .~ (m’*k); % DTFT of y
>> % verification
>> Y_check = (exp(-j*2). w) .*X; % multiplication by exp(-j2w)
>> error = max(abs(Y-Y_check)) % Difference
error =
5.7737e-015 O

O EXAMPLE 3.9  To verify the frequency shift property (3.7), we will use the graphical approach.
Let

z(n) = cos(mn/2), 0<n <100 and y(n) =™z (n)
Then using MATLAB,

>> n = 0:100; x = cos(pi*n/2);

>> k = -100:100; w = (pi/100)*k; % frequency between -pi and +pi

>> X = x * (exp(-j*pi/100))." (n’*k); % DTFT of x

)

>> y = exp(j*pi*n/4).*x; % signal multiplied by exp(j*pi*n/4)
>> Y = y * (exp(-j*pi/100)).~(n’*k); % DTFT of y

% Graphical verification

>> subplot(2,2,1); plot(w/pi,abs(X)); grid; axis([-1,1,0,60])

>> xlabel(’frequency in pi units’); ylabel(’|X|[’)

>> title(’Magnitude of X’)

>> subplot(2,2,2); plot(w/pi,angle(X)/pi); grid; axis([-1,1,-1,1])
>> xlabel(’frequency in pi units’); ylabel(’radiands/pi’)

>> title(’Angle of X’)

>> subplot(2,2,3); plot(w/pi,abs(Y)); grid; axis([-1,1,0,60])
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FIGURE 3.5 Plots in Example 3.9

>> xlabel(’frequency in pi units’); ylabel(’|Y]|’)

>> title(’Magnitude of Y’)

>> subplot(2,2,4); plot(w/pi,angle(Y)/pi); grid; axis([-1,1,-1,1])
>> xlabel(’frequency in pi units’); ylabel(’radians/pi’)

>> title(’Angle of Y’)

From the plots in Figure 3.5, we observe that X (e’*) is indeed shifted by /4
in both magnitude and angle. O

0 EXAMPLE 3.10 To verify the conjugation property (3.8), let z(n) be a complex-valued random
sequence over —5 < n < 10 with real and imaginary parts uniformly distributed
between [0, 1]. The MATLAB verification is as follows.

>> n = -5:10; x = rand(1,length(n)) + j*rand(l,length(n));

>> k = -100:100; w = (pi/100)*k; % frequency between -pi and +pi
>> X = x * (exp(-j*pi/100)) . (n’*k); % DTFT of x

% conjugation property

>> y = conj(x); % signal conjugation

>> Y =y * (exp(-j*pi/100)) . (n’*k); % DTFT of y

% verification
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>> Y_check = conj(fliplr(X)); % conj (X(-w))
>> error = max(abs(Y-Y_check)) % Difference
error =

0

O

[0 EXAMPLE 3.11  To verify the folding property (3.9), let z(n) be a random sequence over —5 <
n < 10 uniformly distributed between [0,1]. The MATLAB verification is as
follows.

>> n = -5:10; x = rand(1,length(n));
>> k = -100:100; w = (pi/100)*k; % frequency between -pi and +pi
>> X = x * (exp(-j*pi/100))." (n’*k); % DTFT of x
% folding property
>> y = fliplr(x); m = -fliplr(n); % signal folding
>> Y =y * (exp(-j*pi/100))." (m’*k); % DTFT of y
% verification
>> Y_check = fliplr(X); % X(-w)
>> error = max(abs(Y-Y_check)) % Difference
error =
0 O

[0 EXAMPLE 3.12 In this problem we verify the symmetry property (3.10) of real signals. Let
z(n) =sin(mn/2), —-5<n<10

Then using the evenodd function developed in Chapter 2, we can compute
the even and odd parts of z(n) and then evaluate their discrete-time Fourier
transforms. We will provide the numerical as well as graphical verification.

MATLARB script:

>> n = -5:10; x = sin(pi*n/2);

>> k = -100:100; w = (pi/100)*k; % frequency between -pi and +pi
>> X = x * (exp(=j*pi/100)) .~ (n’*k); % DTFT of x

% signal decomposition

>> [xe,xo,m] = evenodd(x,n); % even and odd parts

>> XE = xe * (exp(-j*pi/100)). (m’*k); % DTFT of xe
>> X0 = xo * (exp(-j*pi/100))." (m’*k); % DTFT of xo
% verification

>> XR = real(X); % real part of X
>> errorl = max(abs(XE-XR)) % Difference
errorl =

1.8974e-019
>> XI = imag(X); % imag part of X
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FIGURE 3.6 Plots in Example 3.12

>> error2 = max(abs(X0-j*XI)) % Difference
error2 =
1.8033e-019

% graphical verification

>> subplot(2,2,1); plot(w/pi,XR); grid; axis([-1,1,-2,2])

>> xlabel(’frequency in pi units’); ylabel(’Re(X)’);

>> title(’Real part of X’)

>> subplot(2,2,2); plot(w/pi,XI); grid; axis([-1,1,-10,101)

>> xlabel(’frequency in pi units’); ylabel(’Im(X)’);

>> title(’Imaginary part of X’)

>> subplot(2,2,3); plot(w/pi,real(XE)); grid; axis([-1,1,-2,2])
>> xlabel (’frequency in pi units’); ylabel(’XE’);

>> title(’Transform of even part’)

>> subplot(2,2,4); plot(w/pi,imag(X0)); grid; axis([-1,1,-10,10])
>> xlabel(’frequency in pi units’); ylabel(’X0’);

>> title(’Transform of odd part’)

From the plots in Figure 3.6 we observe that the real part of X (e’*) [or the
imaginary part of X (e’“)] is equal to the discrete-time Fourier transform of

ze(n) [or zo(n)]. O
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3.3 THE FREQUENCY DOMAIN REPRESENTATION
OF LTI SYSTEMS

We earlier stated that the Fourier transform representation is the most
useful signal representation for LTI systems. It is due to the following
result.

3.3.1 RESPONSE TO A COMPLEX EXPONENTIAL eon
Let x(n) = €/“°™ be the input to an LTI system represented by the impulse

response h(n).
elwon — h(n) * eJ<on

Then

y(n) = h(n) x 70" = Z h(k)eiwo(n=F)

[i h(k)ejwok] giwon (3.15)

= [FIA()]lw=w,] "

L DEFINITION 1 [Frequency Response] The discrete-time Fourier transform of an impulse
response is called the frequency response (or transfer function) of an LTI
system and is denoted by

H(e™) £ 3 h(n)e 7 (3.16)

Then from (3.15) we can represent the system by
x(n) = " — | H(el¥) | — y(n) = H(e90) x el*on (3.17)

Hence the output sequence is the input exponential sequence modified by
the response of the system at frequency wg. This justifies the definition
of H(e’*) as a frequency response because it is what the complex expo-
nential is multiplied by to obtain the output y(n). This powerful result
can be extended to a linear combination of complex exponentials using
the linearity of LTI systems.

ZAkejwkn . N ZAkH(ejwk) plwrn
k k
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In general, the frequency response H(e/“) is a complex function of
w. The magnitude |H(e/“)| of H(e’*) is called the magnitude (or gain)
response function, and the angle /H(e%) is called the phase response
function as we shall see below.

3.3.2 RESPONSE TO SINUSOIDAL SEQUENCES
Let z(n) = Acos(won + 0y) be an input to an LTT system h(n). Then
from (3.17) we can show that the response y(n) is another sinusoid of the
same frequency wp, with amplitude gained by |H (e7“°)| and phase shifted
by /H(e/*?), that is,

y(n) = A|H(e7*°)| cos(won + g + L H (e7°°)) (3.18)
This response is called the steady-state response, denoted by yss(n). It
can be extended to a linear combination of sinusoidal sequences.

D A cos(win +05) — | H(e*) | — S Al H(e)|
k

cos(wgn + Oy + LH(eI“r))

3.3.3 RESPONSE TO ARBITRARY SEQUENCES
Finally, (3.17) can be generalized to arbitrary absolutely summable se-
quences. Let X (e/¥) = Flz(n)] and Y (e/*) = F[y(n)]; then using the
convolution property (3.11), we have
Y (e?¥) = H(e¥) X (e9%) (3.19)
Therefore an LTI system can be represented in the frequency domain by
X(e) — |H(e) | — Y (/) = H(e) X (/)

The output y(n) is then computed from Y (e/“) using the inverse
discrete-time Fourier transform (3.2). This requires an integral operation,
which is not a convenient operation in MATLAB. As we shall see in
Chapter 4, there is an alternate approach to the computation of output to
arbitrary inputs using the z-transform and partial fraction expansion. In
this chapter we will concentrate on computing the steady-state response.

O EXAMPLE 3.13 Determine the frequency response H(e?*) of a system characterized by h(n) =
(0.9)"u(n). Plot the magnitude and the phase responses.

Solution Using (3.16),
H(e7) =Y h(n)e 7" = (0.9)"e 9"
— oo 0
= _ 1
— Jwyn __
- ;(0'96 ) = T000
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Hence
. 1 1
H Jw — =
|H (™) \/(1 —0.9cosw)? + (0.9sinw)? 1.81 — 1.8cosw
and
) 0.9sinw
Jwy _ _ JIslw
LH(e™) = —arctan [1 —-0.9 cosw}

To plot these responses, we can either implement the |H(e/*)| and £H(e/*)
functions or the frequency response H(e?*) and then compute its magnitude
and phase. The latter approach is more useful from a practical viewpoint [as
shown in (3.18)].

>> w = [0:1:500]*pi/500; % [0, pil axis divided into 501 points.
>> H = exp(j*w) ./ (exp(j*w) - 0.9%ones(1,501));

>> magH = abs(H); angH = angle(H);

>> subplot(2,1,1); plot(w/pi,magH); grid;

>> xlabel(’frequency in pi units’); ylabel(’|H|’);

>> title(’Magnitude Response’);

>> subplot(2,1,2); plot(w/pi,angH/pi); grid

>> xlabel(’frequency in pi units’); ylabel(’Phase in pi Radians’);
>> title(’Phase Response’);

The plots are shown in Figure 3.7. O

[0 EXAMPLE 3.14 Let an input to the system in Example 3.13 be 0.1u(n). Determine the steady-
state response yss(n).

Solution Since the input is not absolutely summable, the discrete-time Fourier transform
is not particularly useful in computing the complete response. However, it can
be used to compute the steady-state response. In the steady state (i.e., n — c0),
the input is a constant sequence (or a sinusoid with wg = 6p = 0). Then the
output is

Yss(n) = 0.1 x H(°) =0.1x10=1

where the gain of the system at w = 0 (also called the DC gain) is H(e’®) = 10,
which is obtained from Figure 3.7. ]

3.3.4 FREQUENCY RESPONSE FUNCTION FROM DIFFERENCE EQUA-
TIONS
When an LTT system is represented by the difference equation

N M
y() + > asy(n— 0 =3 bua(n—m) (3:20)
=1 m=0
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FIGURE 3.7 Frequency response plots in Example 3.13

then to evaluate its frequency response from (3.16), we would need the im-
pulse response h(n). However, using (3.17), we can easily obtain H (e/*).
We know that when x(n) = €/“", then y(n) must be H(e/*)eI“™. Substi-
tuting in (3.20), we have

N M
H<ejw)€jwn + ZaeH(ejw)ejw(nfé) _ Z by, ejw(nfm)
(=1 m=0

or My jem
H(ejw) _ Zm:O m €

1+ Zévzl ap e=Iwt
after canceling the common factor /™ term and rearranging. This equa-
tion can easily be implemented in MATLAB, given the difference equation

parameters.

(3.21)

O EXAMPLE 3.15 An LTI system is specified by the difference equation
y(n) = 0.8y(n — 1) + z(n)

a. Determine H(e*).
b. Calculate and plot the steady-state response yss(n) to

z(n) = cos(0.057n)u(n)
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Solution Rewrite the difference equation as y(n) — 0.8y(n — 1) = z(n).

a. Using (3.21), we obtain
. 1
T 1-0.8e9v

b. In the steady state the input is z(n) = cos(0.057n) with frequency wy =
0.057 and Ay = 0°. The response of the system is

: 1
j0.05my
HE™™) = 75 g o0

H(*) (3.22)

= 4.0928¢ 903377

Therefore
Yss(n) = 4.0928 cos(0.05mn — 0.5377) = 4.0928 cos [0.057 (n — 3.42)]

This means that at the output the sinusoid is scaled by 4.0928 and shifted
by 3.42 samples. This can be verified using MATLAB.

>> subplot(1,1,1)

> b =1; a=[1,-0.8];

>> n=[0:100] ;x = cos(0.05%pi*n) ;

>> y = filter(b,a,x);

>> subplot(2,1,1); stem(n,x);

>> xlabel(’n’); ylabel(’x(n)’); title(’Input sequence’)
>> subplot(2,1,2); stem(n,y);

>> xlabel(’n’); ylabel(’y(n)’); title(’Output sequence’)

From the plots in Figure 3.8, we note that the amplitude of yss(n) is approx-
imately 4. To determine the shift in the output sinusoid, we can compare
zero crossings of the input and the output. This is shown in Figure 3.8, from
which the shift is approximately 3.4 samples. O

In Example 3.15 the system was characterized by a 1st-order dif-
ference equation. It is fairly straightforward to implement (3.22) in
MATLAB as we did in Example 3.13. In practice the difference equations
are of large order and hence we need a compact procedure to implement
the general expression (3.21). This can be done using a simple matrix-
vector multiplication. If we evaluate H(e/“) at k = 0,1, ..., K equispaced
frequencies over [0, 7], then

M —Jjwrm
H(e3*r) = Zm:t;vbm c  k=0,1,... K (3.23)
1+ ZZ:l Qyp e—Jjwit

If we let {b,,}, {ae} (with ag =1), {m=0,...,M}, {{=0,...,N}, and
{wg} be arrays (or row vectors), then the numerator and the denominator
of (3.23) become

bexp(—jm’w); aexp(—jl w)
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FIGURE 3.8 Plots in Example 3.15

respectively. Now the array H(e/“*) in (3.23) can be computed using a ./
operation. This procedure can be implemented in a MATLAB function to
determine the frequency response function, given {b,,} and {as} arrays.
We will explore this in Example 3.16 and in Problem P3.16.

0 EXAMPLE 3.16 A 3rd-order lowpass filter is described by the difference equation
y(n) = 0.0181z(n) 4+ 0.0543z(n — 1) 4+ 0.0543z(n — 2) + 0.0181z(n — 3)
+1.76y(n — 1) — 1.1829y(n — 2) + 0.2781y(n — 3)

Plot the magnitude and the phase response of this filter, and verify that it is a
lowpass filter.

Solution We will implement this procedure in MATLAB and then plot the filter
responses.
>> b = [0.0181, 0.0543, 0.0543, 0.0181]; % filter coefficient array b
>> a = [1.0000, -1.7600, 1.1829, -0.2781]; % filter coefficient array a
>> m = 0:length(b)-1; 1 = 0:length(a)-1; 7% index arrays m and 1
>> K = 500; k = 0:1:K; % index array k for frequencies
>> w = pi*k/K; % [0, pil axis divided into 501 points.
>> num = b * exp(-j*m’*w); % Numerator calculations
>> den = a * exp(-j*1’*w); % Denominator calculations
>> H = num ./ den; % Frequency response
>> magH = abs(H); angH = angle(H); % mag and phase responses
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FIGURE 3.9 Plots for Ezample 3.16

>> subplot(2,1,1); plot(w/pi,magH); grid; axis([0,1,0,1])

>> xlabel(’frequency in pi units’); ylabel(’|H|’);

>> title(’Magnitude Response’) ;

>> subplot(2,1,2); plot(w/pi,angH/pi); grid

>> xlabel(’frequency in pi units’); ylabel(’Phase in pi Radians’);
>> title(’Phase Response’);

From the plots in Figure 3.9 we see that the filter is indeed a lowpass filter. []

3.4 SAMPLING AND RECONSTRUCTION OF ANALOG SIGNALS
i

In many applications—for example, in digital communications—real-
world analog signals are converted into discrete signals using sampling
and quantization operations (collectively called analog-to-digital con-
version, or ADC). These discrete signals are processed by digital signal
processors, and the processed signals are converted into analog signals
using a reconstruction operation (called digital-to-analog conversion or
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DAC). Using Fourier analysis, we can describe the sampling operation
from the frequency-domain viewpoint, analyze its effects, and then ad-
dress the reconstruction operation. We will also assume that the number
of quantization levels is sufficiently large that the effect of quantization
on discrete signals is negligible. We will study the effects of quantization
in Chapter 10.

3.4.1 SAMPLING
Let x,(t) be an analog (absolutely integrable) signal. Its continuous-time
Fourier transform (CTFT) is given by

X,(5Q) 2 / 2o (t)e I dt (3.24)

where Q) is an analog frequency in radians/sec. The inverse continuous-
time Fourier transform is given by

1

Tq(t) = 5 / X, (jQ)e’ 2 dO (3.25)

We now sample z,(t) at sampling interval Ty seconds apart to obtain the
discrete-time signal z(n).
A
z(n) = zq( nTs)

Let X (e/¥) be the discrete-time Fourier transform of x(n). Then it can be
shown [23] that X (e/*) is a countable sum of amplitude-scaled, frequency-
scaled, and translated versions of the Fourier transform X, (j).

X (e = Tisﬁjm X, [j (% - QT_U)] (3.26)

This relation is known as the aliasing formula. The analog and digital
frequencies are related through T

w = QT (3.27)
while the sampling frequency Fj is given by
1
F 2 T sam/sec (3.28)

The graphical illustration of (3.26) is shown in Figure 3.10, from which
we observe that, in general, the discrete signal is an aliased version of the
corresponding analog signal because higher frequencies are aliased into
lower frequencies if there is an overlap. However, it is possible to recover
the Fourier transform X, (j€2) from X(e/“) [or equivalently, the analog
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FIGURE 3.10 Sampling operation in the time and frequency domains

signal x,(¢) from its samples z(n)] if the infinite “replicas” of X,(j) do
not overlap with each other to form X (e/“). This is true for band-limited
analog signals.

DEFINITION 2 [Band-limited Signal] A signal is band-limited if there exists a finite ra-
dian frequency Qg such that X, (jQ) is zero for |Q| > Qg. The frequency
Fo—Q/2m is called the signal bandwidth in Hz.
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Referring to Figure 3.10, if 7 > QTs—or equivalently, F/2 > Fy—
then

. 1 w T w ™
X JWVY — ) — : _— — << — .
() =7 (j Ts)’ T. T, T, (3:29)

which leads to the sampling theorem for band-limited signals.

] THEOREM 3 Sampling Principle
A band-limited signal x,(t) with bandwidth Fy can be reconstructed from
its sample values x(n) = x,(nTs) if the sampling frequency Fs = 1/T; is
greater than twice the bandwidth Fy of x,(t).

F, > 2F,

Otherwise aliasing would result in x(n). The sampling rate of 2Fy for an
analog band-limited signal is called the Nyquist rate.

Note: After x,(t) is sampled, the highest analog frequency that z(n) rep-
resents is F/2 Hz (or w = 7). This agrees with the implication stated in
property 2 of the discrete-time Fourier transform in Section 3.1. Before
we delve into MATLAB implementation of sampling, we first consider
sampling of sinusoidal signals and the resulting Fourier transform in the
following example.

[0 EXAMPLE 3.17 The analog signal z.(t) = 4 + 2 cos(1507t + 7/3) + 4sin(350~t) is sampled at
F, =200 sam/sec to obtain the discrete-time signal z(n). Determine z(n) and
its corresponding DTFT X (e’*).

Solution The highest frequency in the given z,(t) is Fo = 175 Hz. Since Fs = 200, which
is less than 2Fp, there will be aliasing in z(n) after sampling. The sampling
interval is Ts = 1/F, = 0.005 sec. Hence we have

z(n) = za(nTs) = £4(0.005n)

4+ 2 cos (O.?Sﬂ'n + %) + 4sin(1.757n) (3.30)

Note that the digital frequency, 1.757, of the third term in (3.30) is outside the
primary interval of —m < w < 7, signifying that aliasing has occurred. From
the periodicity property of digital sinusoidal sequences in Chapter 2, we know
that the period of the digital sinusoid is 2. Hence we can determine the alias
of the frequency 1.757. From (3.30) we have

z(n) = 44 2cos(0.75mn + =) + 4sin(1.757n — 27n)

= 4+ 2co0s(0.75mn + =) — 4sin(0.257n) (3.31)
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Using Euler’s identity, we can expess x(n) as
2(n) = 4 4 IT/3IOTITN | (=iT/3,=00T5TN | g4 025Tn _ o i0.25mn (3 39)
From Table 3.1 and the DTFT properties, the DTFT of x(n) is given by
X(e’) = 876(w) 4 2me’™36(w — 0.757) + 2me 7 ™/36(w + 0.757)
+jané(w — 0.257) — jadné(w + 0.257), —7 <w < 7. (3.33)

The plot of X (e’*) is shown in Figure 3.15. O

3.4.2 MATLAB IMPLEMENTATION

In a strict sense it is not possible to analyze analog signals using MATLAB
unless we use the Symbolic toolbox. However, if we sample z,(t) on a fine
grid that has a sufficiently small time increment to yield a smooth plot
and a large enough maximum time to show all the modes, then we can
approximate its analysis. Let At be the grid interval such that At < T.
Then

za(m) 2 z,(mAt) (3.34)

can be used as an array to simulate an analog signal. The sampling in-
terval T should not be confused with the grid interval At, which is used
strictly to represent an analog signal in MATLAB. Similarly, the Fourier
transform relation (3.24) should also be approximated in light of (3.34)
as follows:

Xo(jQ) = > wa(m)e TMAAL = ALY wg(m)eIMAL (3.35)

Now if x4(t) [and hence zg(m)] is of finite duration, then (3.35) is similar
to the discrete-time Fourier transform relation (3.3) and hence can be
implemented in MATLAB in a similar fashion to analyze the sampling
phenomenon.

[0 EXAMPLE 3.18 Let z,(t) = e 10001l Determine and plot its Fourier transform.

Solution From (3.24)

0

(oo} oo
Xa(jﬂ) — / xa(t)e_jmdt — / elOUOte—thdt +/e—1000t6—jﬂtdt
oo Zoo 0

0.002
- 0002 (3.36)
1+ (3555)2
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which is a real-valued function since x4 (t) is a real and even signal. To evaluate
Xo(j9) numerically, we have to first approximate x4 (t) by a finite-duration
grid sequence x(m). Using the approximation e™> = 0, we note that z(t)
can be approximated by a finite-duration signal over —0.005 < ¢ < 0.005 (or
equivalently, over [—5,5] msec). Similarly from (3.36), X.(j§2) ~ 0 for Q >
27 (2000). Hence choosing

1
At=5x10°"« ——— =25x10"°
X < 2(2000) x

we can obtain z¢(m) and then implement (3.35) in MATLAB.

% Analog Signal

>> Dt = 0.00005; t = -0.005:Dt:0.005; xa = exp(-1000*abs(t));
% Continuous-time Fourier Transform

>>Wmax = 2*pi*2000; K = 500; k = 0:1:K; W = k*Wmax/K;

>>Xa = xa * exp(-j*t’#W) * Dt; Xa = real(Xa);

>>W = [-fliplr(W), W(2:501)]; % Omega from -Wmax to Wmax
>>Xa = [fliplr(Xa), Xa(2:501)]; % Xa over -Wmax to Wmax interval
>>subplot(2,1,1) ;plot (t*1000,xa) ;

>>xlabel(’t in msec.’); ylabel(’xa(t)’)

>>title(’Analog Signal’)
>>subplot(2,1,2) ;plot (W/(2%pi*1000) ,Xa*x1000) ;

>>xlabel (’Frequency in KHz’); ylabel (’Xa(jW)*1000’)
>>title(’Continuous-time Fourier Transform’)

Figure 3.11 shows the plots of 24 () and X4 (j€2). Note that to reduce the number
of computations, we computed X, (j§2) over [0,40007] rad/sec (or equivalently,
over [0,2] KHz) and then duplicated it over [—40007, 0] for plotting purposes.
The displayed plot of X,(592) agrees with (3.36). O

0 EXAMPLE 3.19 To study the effect of sampling on the frequency-domain quantities, we will
sample z4(t) in Example 3.18 at 2 different sampling frequencies.

a. Sample z4(t) at Fs, = 5000 sam/sec to obtain x1(n). Determine and plot

X1 (6jw).
b. Sample zq(t) at Fy = 1000 sam/sec to obtain x2(n). Determine and plot
XQ (63“).
Solution a. Since the bandwidth of z4(t) is 2KHz, the Nyquist rate is 4000 sam/sec,
which is less than the given F;. Therefore aliasing will be (almost) nonexis-
tent.
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FIGURE 3.11 Plots in Example 3.18

MATLAB script:

% Analog Signal

>> Dt = 0.00005; t = -0.005:Dt:0.005; xa = exp(-1000*abs(t));
% Discrete-time Signal

>> Ts = 0.0002; n = -25:1:25; x = exp(-1000*abs (n*Ts)) ;

% Discrete-time Fourier transform

>> K = 500; k = 0:1:K; w = pixk/K;

>> X = x * exp(-j*n’*w); X = real(X);

>> W [-fliplr(w), w(2:K+1)]; X = [fliplr(X), X(2:K+1)];
>> subplot(2,1,1) ;plot(t*1000,xa);

>> xlabel(’t in msec.’); ylabel(’x1(n)’)

>> title(’Discrete Signal’); hold on

>> stem(n*Ts*1000,x); gtext(’Ts=0.2 msec’); hold off

>> subplot(2,1,2);plot(w/pi,X);

>> xlabel(’Frequency in pi units’); ylabel(’X1(w)’)

>> title(’Discrete-time Fourier Transform’)

In the top plot in Figure 3.12, we have superimposed the discrete signal 1 (n)
over x,(t) to emphasize the sampling. The plot of X2(e’*) shows that it is a
scaled version (scaled by Fy = 5000) of X,(5€2). Clearly there is no aliasing.
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FIGURE 3.12 Plots in Example 3.19a

b. Here F, = 1000 < 4000. Hence there will be a considerable amount of alias-
ing. This is evident from Figure 3.13, in which the shape of X (e/*) is different
from that of X,(j€2) and can be seen to be a result of adding overlapping
replicas of X,(j92). O

3.4.3 RECONSTRUCTION

From the sampling theorem and the preceding examples, it is clear that if
we sample band-limited x,(t) above its Nyquist rate, then we can recon-
struct z,(t) from its samples z:(n). This reconstruction can be thought of
as a 2-step process:

e First the samples are converted into a weighted impulse train.

i z(n)6(t—nTy) = - -4+x(=1)6(n+Ts)+x(0)6(t) +x(1)6(n—Ts)+- - -

n=—oo

e Then the impulse train is filtered through an ideal analog lowpass filter
band-limited to the [—F;/2, F/2] band.

Impulse train Ideal lowpass
z(n) — conversion | filter — Za(?)
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FIGURE 3.13 Plots in Example 3.18b

This two-step procedure can be described mathematically using an inter-
polating formula [23]

xo(t) = Z x(n) sinc [Fs(t — nTs)] (3.37)
where sinc(z) = % is an interpolating function. The physical inter-

pretation of the above reconstruction (3.37) is given in Figure 3.14, from
which we observe that this ideal interpolation is not practically feasible
because the entire system is noncausal and hence not realizable.

0 EXAMPLE 3.20 Consider the sampled signal xz(n) from Example 3.17. It is applied as an in-
put to an ideal D/A converter (that is, an ideal interpolator) to obtain the
analog signal y,(t). The ideal D/A converter is also operating at Fs = 200
sam/sec. Obtain the reconstructed signal yq (), and determine whether the sam-
pling/reconstruction operation resulted in any aliasing. Also plot the Fourier
transforms X, (5Q), X (e/*), and Y, (59).
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FIGURE 3.14 Reconstruction of band-limited signal from its samples

Solution We can determine y,(t) using (3.31). However, since all frequencies in the sinu-
soidal sequence x(n) are between the primary period of —7 < w < 7, we can
equivalently obtain yq(t) by substituting n by ¢Fs. Thus from (3.31), we have

Ya(t) = z(n)

n=tF's = l’('I’L) n=200t

= 4+ 2cos (0.7577200t + g) — 45in(0.257200¢)

= 4+ 2cos (1507715 + g) — 4sin(507t) (3.38)

As expected, the 175 Hz component in z,(t) is aliased into the 25 Hz component
in ya(t).
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Using Euler’s identity on the given z4(¢) and the properties, the CTFT
Xa(j) is given by

Xa(j) = 876(Q) + 2me’™/35(Q — 1507) + 2meT™/36(Q2 + 1507)
+45m6(Q2 — 350m) — 45mw6(2 + 3507). (3.39)

It is informative to plot the CTFT X, (5€2) as a function of the cyclic frequency
F in Hz using Q = 27 F. Thus the quantity X, (j27F) from (3.39) is given by

Xa(j2rF) = 48(F) 4 &?™/3§(F — 75) + e 7™/*§(F + 75)
+2j8(F — 175) — 256(F + 175). (3.40)

where we have used the identity §(€2) = §(2mF) = 5=6(F). Similarly, the CTFT
Y. (527 F) is given by

Yo (j2rF) = 48(F) 4 €™/ *6(F — 75) + ¢ "™/36(F + 175)
+2§8(F — 25) — 256(F + 25). (3.41)

Figure 3.15a shows the CTFT of the original signal z,(t) as a function of
F. The DTFT X(ej”) of the sampled sequence x(n) is shown as a function of
w in Figure 3.15b, in which the impulses due to shifted replicas are shown in
gray shade for clarity. The ideal D/A converter response is also shown in gray
shade. The CTFT of the reconstructed signal yq(¢) is shown in Figure 3.15¢
which clearly shows the aliasing effect. U

Practical D/A converters In practice we need a different approach
than (3.37). The two-step procedure is still feasible, but now we replace
the ideal lowpass filter by a practical analog lowpass filter. Another in-
terpretation of (3.37) is that it is an infinite-order interpolation. We want
finite-order (and in fact low-order) interpolations. There are several ap-
proaches to do this.

e Zero-order-hold (ZOH) interpolation: In this interpolation a given
sample value is held for the sample interval until the next sample is
received.

To(t) =xz(n), nTs<n<(n+1)T;s

which can be obtained by filtering the impulse train through an inter-
polating filter of the form

hot) = 1, 0<t<T;
o 0, otherwise
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FIGURE 3.15 Fourier transforms of the sinusoidal signals z.(t), x(n), and ya(t)

which is a rectangular pulse. The resulting signal is a piecewise-constant
(staircase) waveform which requires an appropriately designed analog
postfilter for accurate waveform reconstruction.

z(n) — — &a(t) — — (1)

o 1st-order-hold (FOH) interpolation: In this case the adjacent sam-
ples are joined by straight lines. This can be obtained by filtering the
impulse train through

t
1+ —, 0<t<T,
+Ts, <
mt)={1_1L 71 <i<om,
T, -
0, otherwise

Once again, an appropriately designed analog postfilter is required
for accurate reconstruction. These interpolations can be extended
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to higher orders. One particularly useful interpolation employed by
MATLAB is the following.

e Cubic spline interpolation: This approach uses spline interpolants
for a smoother, but not necessarily more accurate, estimate of the ana-
log signals between samples. Hence this interpolation does not require
an analog postfilter. The smoother reconstruction is obtained by us-
ing a set of piecewise continuous third-order polynomials called cubic
splines, given by [3]

24 (t) = ap(n) + a1 (n) (t — nTy) + az(n) (t — nT)?

+az(n) (t —nT,)*, nTy <n< (n+ 1T, (3.42)

where {a;(n),0 < ¢ < 3} are the polynomial coefficients, which are de-
termined by using least-squares analysis on the sample values. (Strictly
speaking, this is not a causal operation but is a convenient one in

MATLAB.)

3.4.4 MATLAB IMPLEMENTATION

For interpolation between samples MATLAB provides several approaches.
The function sinc(x), which generates the (sinwz) /7z function, can
be used to implement (3.37), given a finite number of samples. If
{z(n), n1 <n <ns} is given, and if we want to interpolate z, (t) on
a very fine grid with the grid interval At, then from (3.37)

Tq (MAL) ~ Y x(n)sine [Fy(mAt —nTy)], + <mAt<t, (3.43)

n=mni

which can be implemented as a matrix-vector multiplication operation as
shown below.

> n =nl:n2; t = tl:t2; Fs = 1/Ts; nTs = nxTs; J Ts is the sampling interval
>> xa = x * sinc(Fs*(ones(length(n),1)*t-nTs’*ones(1,length(t))));

Note that it is not possible to obtain an ezact analog z,(t) in light of the
fact that we have assumed a finite number of samples. We now demon-
strate the use of the sinc function in the following two examples and also
study the aliasing problem in the time domain.

[0 EXAMPLE 3.21 From the samples z1(n) in Example 3.19a, reconstruct z,(¢) and comment on
the results.

Solution Note that z1(n) was obtained by sampling x4 (¢) at Ts = 1/Fs = 0.0002 sec. We
will use the grid spacing of 0.00005 sec over —0.005 < ¢ < 0.005, which gives
z(n) over —25 < n < 25.
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Reconstructed Signal from x1(n) using sinc function
1 T T T T T T

tin msec.

FIGURE 3.16 Reconstructed signal in Example 3.21
MATLARB script:

% Discrete-time Signal x1(n)
>> Ts = 0.0002; n = -25:1:25; nTs = n*Ts; x = exp(-1000*abs(nTs)) ;
% Analog Signal reconstruction
>> Dt = 0.00005; t = -0.005:Dt:0.005;
>> xa = x * sinc(Fs#*(ones(length(n),1)*t-nTs’*ones(1,length(t))));
% check
>> error = max(abs(xa - exp(-1000*abs(t))))
error =
0.0363

The maximum error between the reconstructed and the actual analog signal is
0.0363, which is due to the fact that z,(t) is not strictly band-limited (and also
we have a finite number of samples). From Figure 3.16, we note that visually
the reconstruction is excellent. OJ

[0 EXAMPLE3.22 From the samples z2(n) in Example 3.17b reconstruct z4(t) and comment on
the results.

Solution In this case z2(n) was obtained by sampling x4 (t) at Ts = 1/Fs = 0.001 sec. We
will again use the grid spacing of 0.00005 sec over —0.005 < ¢ < 0.005, which
gives z(n) over —5 < n < 5.

% Discrete-time Signal x2(n)
>> Ts = 0.001; n = -5:1:5; nTs = n*Ts; x = exp(-1000*abs(nTs));
% Analog Signal reconstruction
>> Dt = 0.00005; t = -0.005:Dt:0.005;
>> xa = x * sinc(Fs*(ones(length(n),1)*t-nTs’*ones(1,length(t))));
% check
>> error = max(abs(xa - exp(-1000*abs(t))))
error =
0.1852
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Reconstructed Signal from x2(n) Using Sinc Function
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FIGURE 3.17 Reconstructed signal in Example 3.22

The maximum error between the reconstructed and the actual analog signals is
0.1852, which is significant and cannot be attributed to the nonband-limitedness
of z4(t) alone. From Figure 3.17, observe that the reconstructed signal differs
from the actual one in many places over the interpolated regions. This is the
visual demonstration of aliasing in the time domain. O

The second MATLAB approach for signal reconstruction is a plotting
approach. The stairs function plots a staircase (ZOH) rendition of the
analog signal, given its samples, while the plot function depicts a linear
(FOH) interpolation between samples.

[0 EXAMPLE 3.23  Plot the reconstructed signal from the samples z1(n) in Example 3.19 using the
ZOH and the FOH interpolations. Comment on the plots.

Solution Note that in this reconstruction we do not compute z4(t) but merely plot it
using its samples.

% Discrete-time Signal x1(n) : Ts = 0.0002

>> Ts = 0.0002; n = -25:1:25; nTs = n*Ts; x = exp(-1000*abs(nTs));

% Plots

>> subplot(2,1,1); stairs(nTs*1000,x);

>> xlabel(’t in msec.’); ylabel(’xa(t)’)

>> title(’Reconstructed Signal from x1(n) using zero-order-hold’); hold on
>> stem(n*Ts*1000,x); hold off

YA

% Discrete-time Signal x2(n) : Ts = 0.001

>> Ts = 0.001; n = -5:1:5; nTs = n*Ts; x = exp(-1000*abs(nTs));

% Plots

>> subplot(2,1,2); plot(nTs*1000,x);

>> xlabel(’t in msec.’); ylabel(’xa(t)’)

>> title(’Reconstructed Signal from x2(n) using zero-order-hold’); hold on
>> stem(n*Ts*1000,x); hold off
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Reconstructed Signal from x1(n) using zero—order—hold
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FIGURE 3.18 Signal reconstruction in Example 3.23

The plots are shown in Figure 3.18, from which we observe that the ZOH re-
construction is a crude one and that the further processing of analog signal is
necessary. The FOH reconstruction appears to be a good one, but a careful
observation near ¢ = 0 reveals that the peak of the signal is not correctly repro-
duced. In general, if the sampling frequency is much higher than the Nyquist
rate, then the FOH interpolation provides an acceptable reconstruction. O

The third approach of reconstruction in MATLAB involves the use
of cubic spline functions. The spline function implements interpolation
between sample points. It is invoked by xa = spline(uTs,x,t), in which
x and nTs are arrays containing samples z(n) at nT instances, respec-
tively, and t array contains a fine grid at which x,(t) values are desired.
Note once again that it is not possible to obtain an ezact analog x,(t).

[0 EXAMPLE 3.24 From the samples z1(n) and z2(n) in Example 3.19, reconstruct z,(t) using the
spline function. Comment on the results.

Solution This example is similar to Examples 3.21 and 3.22. Hence sampling parameters
are the same as before.
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Reconstructed Signal from x1(n) using cubic spline function
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Reconstructed Signal from x2(n) using cubic spline function
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FIGURE 3.19 Reconstructed signal in Example 3.24

MATLARB script:

% a) Discrete-time Signal x1(n): Ts = 0.0002

>> Ts = 0.0002; n = -25:1:25; nTs = nxTs; x = exp(-1000*abs(nTs)) ;
% Analog Signal reconstruction

>> Dt = 0.00005; t = -0.005:Dt:0.005; xa = spline(nTs,x,t);

% check

>> error = max(abs(xa - exp(-1000*abs(t))))

error = 0.0317

The maximum error between the reconstructed and the actual analog signal is
0.0317, which is due to the nonideal interpolation and the fact that z,(t) is
nonband-limited. Comparing this error with that from the sinc (or ideal) inter-
polation, we note that this error is lower. The ideal interpolation generally suf-
fers more from time-limitedness (or from a finite number of samples). From the
top plot in Figure 3.19 we observe that visually the reconstruction is excellent.

MATLARB script:

% Discrete-time Signal x2(n): Ts = 0.001
>> Ts = 0.001; n = -5:1:5; nTs = n*Ts; bd
% Analog Signal reconstruction

>> Dt = 0.00005; t = -0.005:Dt:0.005; xa

exp(-1000*abs (nTs)) ;

spline(nTs,x,t);
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% check
>> error = max(abs(xa - exp(-1000*abs(t))))
error = 0.1679

The maximum error in this case is 0.1679, which is significant and cannot be
attributed to the nonideal interpolation or nonband-limitedness of x4 (). From
the bottom plot in Figure 3.19 observe that the reconstructed signal again
differs from the actual one in many places over the interpolated regions. O

From these examples it is clear that for practical purposes the spline
interpolation provides the best results.

3.5 PROBLEMS

P3.1 Using the matrix-vector multiplication approach discussed in this chapter, write a
MATLAB function to compute the DTFT of a finite-duration sequence. The format of
the function should be

function [X] = dtft(x,n,w)

% Computes Discrete-time Fourier Transform

% [X] = dtft(x,n,w)

% X = DTFT values computed at w frequencies

% x = finite duration sequence over n
% 1n = sample position vector
% w = frequency location vector

Use this function to compute the DTFT X (e/*) of the following finite-duration sequences
over — < w < 7. Plot DTFT magnitude and angle graphs in one figure window.

1. x(n) = (0.6) [u(n + 10) — u(n — 11)]. Comment on the angle plot.
2. z(n) =n(0.9)" [u(n) — u(n — 21)].
3. z(n) = [cos(0.57n) + 7 sin(0.57n)][u(n) — u(n — 51)]. Comment on the magnitude plot.
4. z(n) ={4,3,2,1,1,2,3,4}. Comment on the angle plot.
T
5. z(n) ={4,3,2,1,—1,—2, -3, —4}. Comment on the angle plot.
T

P3.2  Let z1(n) ={1,2,2,1}. A new sequence z2(n) is formed using
T

zi(n—4), 4<n<T, (3.44)
0, Otherwise.

z2(n) =

{xl(n), 0<n<3;

1. Express Xo(e?®) in terms of X;(e?*) without explicitly computing X (e7*).
2. Verify your result using MATLAB by computing and plotting magnitudes of the
respective DTFTs.
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P3.3 Determine analytically the DTFT of each of the following sequences. Plot the magnitude
and angle of X (e’*) over 0 < w < 7.
1. z(n) =2(0.5)" u(n + 2).
2. z(n) = (0.6)™ [u(n + 10) — u(n — 11)].
3. z(n) =n(0.9)" u(n + 3).
4. z(n) = (n+3) (0.8)" " u(n — 2).
5. z(n) =4(-0.7)" cos(0.25mn)u(n).
P3.4 The following finite-duration sequences are called windows and are very useful in DSP.
,0<n<M
Rectangular: Ryr(n) = {0’ otherwise
Hanning: Cps(n) = 0.5 [1 — cos 2mn } Rar(n)
M—-1
. M—-1-2n
Triangular: Ty (n) = |:1 - %} Ry (n);
Hamming: Ha(n) = [0 54 — 0.46 cos ]\/2[ } R (n)
For each of these windows, determine their DTFTs for M = 10, 25, 50, 101. Scale
transform values so that the maximum value is equal to 1. Plot the magnitude of the
normalized DTFT over —m < w < 7. Study these plots and comment on their behavior as
a function of M.
P3.5 Using the definition of the DTFT in (3.1), determine the sequences corresponding to the
following DTFTs:
1. X (/) =3+ 2cos(w) + 4 cos(2w).
2. X(e?) = [1 — 6 cos(3w) + 8cos(bw)] e 773,
3. X(e/*) =2+ jdsin(2w) — 5 cos(4w).
4. X (') = [1 + 2cos(w) + 3 cos(2w)] cos(w/2)e~75/2,
5. X(e?) = 5 [3 + 2cos(w) + 4 cos(2w)] sin(w)e ™73,
P3.6 Using the definition of the inverse DTFT in (3.2), determine the sequences corresponding

to the following DTFTs:

1 X () = {(1)

2. X(efv) = {(1)

3. X(%)=<¢ 1,
0,

. 07
4. X(e*) =4 1,
0,

0 < fwl <7/3;
/3 < |w| < 7.

0 < |w| < 37/4;
3r/4 < |w| < .

0 <|w| <7/8;
/8 < |w| < 3m/4.
3r/4 < |w| <.
—7 < |w| < 7/4;
w/4 < |w| < 3m/4.
3r/4 < |w| <.

5. X(ef¥) = w el (7/2=10w)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage L earning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems 99

Remember that the above transforms are periodic in w with period equal to 27. Hence,
functions are given only over the primary period of — 7 < w < 7.

P3.7 A complex-valued sequence x(n) can be decomposed into a conjugate symmetric part
Ze(n) and an conjugate anti-symmetric part z,(n) as discussed in Chapter 2. Show that

Flze(n)] = Xr(e™) and  F[zo(n)] = jX1(e’*)
where X (e’) and Xr(e’“) are the real and imaginary parts of the DTFT X (e’)
respectively. Verify this property on
z(n) = 2(0.9)7" [cos(0.17n) + j sin(0.97n)] [u(n) — u(n — 10)]
using the MATLAB functions developed in Chapter 2.
P3.8 A complex-valued DTFT X(ej‘*’) can also be decomposed into its conjugate symmetric
part X.(e’*) and conjugate anti-symmetric part X,(e’), i.e.,
X(e) = X () + Xoe)

where

K@) = SIX(E) + X7 (7)) and Xo(e!*) = 5[X(e) ~ X"(e7)

1
2

N =

Show that
FUX(E)] = 2rl(n) and  F~'[Xo(e™)] = ju1(n)
where zr(n) and x7(n) are the real and imaginary parts of x(n). Verify this property on
x(n) = %" [u(n) — u (n — 20)]
using the MATLAB functions developed in Chapter 2.

P3.9  Using the frequency-shifting property of the DTFT, show that the real part of X (e/*) of
a sinusoidal pulse

z(n) = (coswon)Rar(n)
where Ras(n) is the rectangular pulse given in Problem P3.4 is given by

Xn(e) = %cos { (w—wo)(M —1) } sin {(w — wo) M/2}

2 sin {(w — wo) /2}
Lo { (s + o) (M — 1>} sin {[w — (27 — wo)] M/2)
2 sin {[w — (27 — wo)] /2}

Compute and plot Xg(e?“) for w, = 7/2 and M = 5, 15, 25, 100. Use the plotting
interval [—, 7]. Comment on your results.

P3.10 Let z(n) = Ti0(n) be a triangular pulse given in Problem P3.4. Using properties of the
DTFT, determine and plot the DTFT of the following sequences.

1. z(n) = Tio(—n)

2. z(n) = Tio(n) — Tio(n — 10)
3. z(n) = Tio(n) * Tro(—n)

4. z(n) = Two(n)e?™

5. z(n) = cos(0.1mn)Tio(n)
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P3.11 For each of the linear, shift-invariant systems described by the impulse response, _
determine the frequency response function H(e’*). Plot the magnitude response |H (e’*)|
and the phase response ZH (e’*) over the interval [—m, 7).
h(n) = (0.9)"™
h(n) = sinc(0.2n)[u(n + 20) — u(n — 20)], where sinc0 = 1.
() = sine(0.2n)u(n) — u(n — 40)]
h(n) = [(0.5)" + (0.4)"Ju(n)
h(n) = (0.5)!"! cos(0.17n)
P3.12 Let z(n) = Acos(won + o) be an input sequence to an LTI system described by the
impulse response h(n). Show that the output sequence y(n) is given by

9":*“.‘""!\-”.H

) =
) =
) =
) =

y(n) = A|H(ejwo)| COS[LU()’I’L + 90 4 AH(ej“’O)]

P3.13 Let z(n) = 3cos (0.57mn + 60°) 4+ 2sin (0.37n) be the input to each of the systems
described in Problem P3.11. In each case, determine the output sequence y(n).

P3.14 An ideal lowpass filter is described in the frequency domain by

; 1-e7Jow lw] <w
H Jwy — ) =~ We
a(e™) { 0, we < |lw] <7
where w,. is called the cutoff frequency and « is called the phase delay.

1. Determine the ideal impulse response hq(n) using the IDTFT relation (3.2).
2. Determine and plot the truncated impulse response

_J ha(n), 0<n<N-1
hin) = { 0, otherwise

for N =41, o = 20, and w. = 0.57. _
3. Determine and plot the frequency response function H (¢’*), and compare it with the
ideal lowpass filter response Hgi(e’“). Comment on your observations.

P3.15 An ideal highpass filter is described in the frequency-domain by

i l-e77 we<|w| <7
Jwy ’ c =
Hd(e ) = { 0, ‘w| < we

where w, is called the cutoff frequency and « is called the phase delay.

1. Determine the ideal impulse response hq(n) using the IDTFT relation (3.2).
2. Determine and plot the truncated impulse response

_J ha(n), 0<n<N-1
h(n) = { 0, otherwise
for N =31, a = 15, and w. = 0.57. ,
3. Determine and plot the frequency response function H(e’*), and compare it with the
ideal highpass filter response Hq(e’*). Comment on your observations
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P3.16 For a linear, shift-invariant system described by the difference equation

y(n) = mex(n—m)—Zagy(n—ﬂ)

=1
the frequency-response function is given by
M iy
e = Toizgbe ™"
14 22\1:1 age—Iwt

Write a MATLAB function freqresp to implement this relation. The format of this
function should be

function [H] = freqresp(b,a,w)
% Frequency response function from difference equation
% [H] = freqresp(b,a,w)

% H = frequency response array evaluated at w frequencies
% b = numerator coefficient array

% a = denominator coefficient array (a(1)=1)

% w = frequency location array

P3.17 Determine H(e’*), and plot its magnitude and phase for each of the following systems:

L oy(n)=+ an:o xz(n —m)

2. y(n) = z(n) — z(n — 2) + 0.95y(n — 1) — 0.9025y(n — 2)

3. y(n)==z(n) —z(n—1)+z(n —2) + 0.95y(n — 1) — 0.9025y(n — 2)

4. y(n) = z(n) — 1.7678zx(n — 1) 4+ 1.5625z(n — 2) 4+ 1.1314y(n — 1) — 0.64y(n — 2)

5. y(n) = 2(n) = 327, (05)" y (n = 0)
P3.18 A linear, shift-invariant system is described by the difference equation

3 3
y(n) = Z x(n—2m) — Z (0.81)" y (n — 20)
m=0 =1

Determine the steady-state response of the system to the following inputs:
z(n) =5+10(-1)"

z(n) =1+ cos (0.5mn + 7/2)

x(n) = 2sin (mn/4) + 3 cos (3mn/4)

z(n) =3, _, (k+1) cos (nkn/4)

z(n) = cos (mn)

ARl

In each case, generate z(n), 0 < n < 200, and process it through the filter function to
obtain y(n). Compare your y(n) with the steady-state responses in each case.

P3.19 An analog signal x, (t) = sin (10007t) is sampled using the following sampling intervals.
In each case, plot the spectrum of the resulting discrete-time signal.
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1. Ts = 0.1 ms
2. Ts =1 ms
3. Ts = 0.01 sec

P3.20 We implement the following analog filter using a discrete filter.

xa(t)H‘A/D m‘h(n)‘M‘D/A‘Hya(t)

The sampling rate in the A/D and D/A is 8000 sam/sec, and the impulse response is
h(n) = (=0.9)" u(n).

1. What is the digital frequency in z(n) if z, (¢t) = 10 cos (10, 0007¢)?

Determine the steady-state output yq (t) if =4 (¢t) = 10 cos (10, 0007t).

Determine the steady-state output yq (¢) if x4 (t) = 5sin(8, 0007t).

Find two other analog signals z, (¢), with different analog frequencies, that will give

the same steady-state output y.(t) when z4(t) = 10 cos(10,0007t) is applied.

5. To prevent aliasing, a prefilter would be required to process z, (t) before it passes to
the A/D converter. What type of filter should be used, and what should be the largest
cutoff frequency that would work for the given configuration?

=W

P3.21 Consider an analog signal x, (t) = cos(207t), 0 < ¢ < 1. It is sampled at Ts = 0.01, 0.05,
and 0.1 sec intervals to obtain z(n).

1. For each T plot z(n).

2. Reconstruct the analog signal y, (t) from the samples z(n) using the sinc interpolation
(use At =0.001) and determine the frequency in y, (¢) from your plot. (Ignore the end
effects.)

3. Reconstruct the analog signal y, (¢) from the samples z(n) using the cubic spline
interpolation, and determine the frequency in y, (¢) from your plot. (Again, ignore the
end effects.)

4. Comment on your results.

P3.22 Consider the analog signal z, (t) = cos (207t + 6), 0 < ¢ < 1. It is sampled at T = 0.05
sec intervals to obtain z(n). Let § = 0, w/6, w/4, /3, ©/2. For each of these 6 values,
perform the following.

1. Plot z, (t) and superimpose z(n) on it using the plot(n,x,’0’) function.

2. Reconstruct the analog signal y, (t) from the samples z(n) using the sinc interpolation
(Use At = 0.001) and superimpose z(n) on it.

3. Reconstruct the analog signal y, (¢) from the samples x(n) using the cubic spline
interpolation and superimpose z(n) on it.

4. You should observe that the resultant reconstruction in each case has the correct
frequency but a different amplitude. Explain this observation. Comment on the role of
phase of z, (t) on the sampling and reconstruction of signals.
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CHAPTER

The z-Transform

In Chapter 3 we studied the discrete-time Fourier transform approach for
representing discrete signals using complex exponential sequences. This
representation clearly has advantages for LTI systems because it describes
systems in the frequency domain using the frequency response function
H(e’*). The computation of the sinusoidal steady-state response is greatly
facilitated by the use of H(e’*). Furthermore, response to any arbitrary
absolutely summable sequence z(n) can easily be computed in the fre-
quency domain by multiplying the transform X (e/*) and the frequency
response H (e/“). However, there are two shortcomings to the Fourier
transform approach. First, there are many useful signals in practice—
such as u(n) and nu(n)—for which the discrete-time Fourier transform
does not exist. Second, the transient response of a system due to ini-
tial conditions or due to changing inputs cannot be computed using the
discrete-time Fourier transform approach.

Therefore we now consider an extension of the discrete-time Fourier
transform to address these two problems. This extension is called the
z-transform. Tts bilateral (or two-sided) version provides another domain
in which a larger class of sequences and systems can be analyzed, and its
unilateral (or one-sided) version can be used to obtain system responses
with initial conditions or changing inputs.

4.1 THE BILATERAL z-TRANSFORM
i

The z-transform of a sequence z(n) is given by
o0

X(z) £ Zlz(n)] = > a(n)z" (4.1)

n=—oo
103
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where z is a complex variable. The set of z values for which X (z) exists
is called the region of convergence (ROC) and is given by

R, <|z| < Ryt (4.2)

for some non-negative numbers R, and R, .
The inverse z-transform of a complex function X (z) is given by

21X (2)] = - 740 X(2)2"1dz (43)

where C' is a counterclockwise contour encircling the origin and lying
in the ROC.

Comments:

1. The complex variable z is called the complex frequency given by z =
|z|e’¥, where |z| is the magnitude and w is the real frequency.

2. Since the ROC (4.2) is defined in terms of the magnitude |z|, the shape
of the ROC is an open ring, as shown in Figure 4.1. Note that R,_
may be equal to zero and/or R, could possibly be co.

3. If Ry+ < R,—, then the ROC is a null space and the z-transform does
not exist.

4. The function |z| = 1 (or z = €7¥) is a circle of unit radius in the z-plane
and is called the wunit circle. If the ROC contains the unit circle, then
we can evaluate X (z) on the unit circle.

X(2)omero = X(2) = Y x(n)e? = Flz(n)]

n=—oo

Therefore the discrete-time Fourier transform X (e/“) may be viewed
as a special case of the z-transform X (z).

Im{z}

Rx+

Re{z}
Ry

FIGURE 4.1 A general region of convergence
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Im{z}
xa
Re{z}

FIGURE 4.2 The ROC in Example 4.1

[0  EXAMPLE41 Let z1(n) = a™u(n), 0 < |a] < oco. (This sequence is called a positive-time
sequence). Then

o]

n_-n __ = a n_ 1 R a
X1(z) = Za z —Z (;) = m, if ; <1
0 0
— Zia, |z| > |a| = ROCy: a| < |z| < oo
Ry Ry

Note: Xi(z) in this example is a rational function; that is,

2 B(z) z

X1(2) Alz)  z—a

where B(z) = z is the numerator polynomial and A(z) = z—a is the denominator
polynomial. The roots of B(z) are called the zeros of X(z), whereas the roots
of A(z) are called the poles of X(z). In this example X1(z) has a zero at the
origin z = 0 and a pole at z = a. Hence z1(n) can also be represented by a
pole-zero diagram in the z-plane in which zeros are denoted by o and poles by
X as shown in Figure 4.2. O

0  EXAMPLE4.2 Let z2(n) = —b"u(—n—1),0 < |b| < co. (This sequence is called a negative-time
sequence.) Then

v =S () =S () S ()

1 z

:1_1—z/b:z—b’

ROCs2: 0 < |z| < |b]
~~ ~—

Ry_ Royt

The ROC; and the pole-zero plot for this z2(n) are shown in Figure 4.3.

Im{z}

Re{z}
X b

FIGURE 4.3 The ROC in Example 4.2
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106 Chapter 4 W THE zTRANSFORM

Note: If b = a in this example, then X5 (z) = X1 (z) except for their respective
ROCs; that is, ROC; # ROC:. This implies that the ROC is a distinguishing
feature that guarantees the uniqueness of the z-transform. Hence it plays a very
important role in system analysis. O

O EXAMPLE 43  Let z3(n) = z1(n) + z2(n) = a"u(n) — b"u(—n — 1) (This sequence is called a
two-sided sequence.) Then using the preceding two examples,

oo —1
X3(2) = Zanzf” be"zﬂL
n=0 —o00
zZ z
- { ,ROC;: |2| > \a\}—i—{—,ROCl: 2| < |b|}
zZ—a z—0>b
— % 4+ _ % . ROCs;: ROC; NROC,
Z—a z—0b

If |b| < |a|, than ROC3 is a null space, and X3(z) does not exist. If |a| < |b],
then the ROCj3 is |a| < |z] < |b], and X3(z) exists in this region as shown in
Figure 4.4. O

4.1.1 PROPERTIES OF THE ROC
From the observation of the ROCs in the preceding three examples, we
state the following properties.

1. The ROC is always bounded by a circle since the convergence
condition is on the magnitude |z|.

2. The sequence x1(n) = a™u(n) in Example 4.1 is a special case of a right-
sided sequence, defined as a sequence x(n) that is zero for some n <
ng. From Example 4.1, the ROC for right-sided sequences is always
outside of a circle of radius R,_. If ng > 0, then the right-sided
sequence is also called a causal sequence.

3. The sequence z2(n) = —b"u(—n—1) in Example 4.2 is a special case of a
left-sided sequence, defined as a sequence x(n) that is zero for some n >
ng. If ng < 0, the resulting sequence is called an anticausal sequence.
From Example 4.2, the ROC for left-sided sequences is always inside
of a circle of radius R .

Im{z} Im{z}
a
X
xa
Re{z} Re{z}
0 X b 0
bx
a>b a<b

FIGURE 4.4 The ROC in Example 4.3
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4. The sequence z3(n) in Example 4.3 is a two-sided sequence. The ROC
for two-sided sequences is always an open ring R,_ < |z| < Rz,
if it exists.

5. The sequences that are zero for n < m; and n > no are called
finite-duration sequences. The ROC for such sequences is the entire
z-plane. If ny < 0, then z = oo is not in the ROC. If ny > 0, then
z = 0 is not in the ROC.

6. The ROC cannot include a pole since X(z) converges uniformly in
there.

7. There is at least one pole on the boundary of a ROC of a rational X (z).

8. The ROC is one contiguous region; that is, the ROC does not come in
pieces.

In digital signal processing, signals are assumed to be causal since
almost every digital data is acquired in real time. Therefore the only
ROC of interest to us is the one given in statement 2.

4.2 IMPORTANT PROPERTIES OF THE z2-TRANSFORM
i

The properties of the z-transform are generalizations of the properties
of the discrete-time Fourier transform that we studied in Chapter 3. We
state the following important properties of the z-transform without proof.

1. Linearity:

Zla1z1(n) + azze(n)] = a1 X1(2) + a2 X2(2); ROC: ROC,, NROC,,

(4.4)
2. Sample shifting:
Z[z(n—np)] =2 "X(2); ROC: ROC, (4.5)
3. Frequency shifting:
Zla"z(n) =X (2) ;  ROC: ROC, scaled by |a| (4.6)
4. Folding:
Z[z(—n)]=X(1/2); ROC: Inverted ROC, (4.7)
5. Complex conjugation:
Zz*(n)] = X*(z*); ROC: ROC, (4.8)
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6. Differentiation in the z-domain:

Znxz(n)] = —z%(z); ROC: ROC, (4.9)

z

This property is also called the multiplication-by-a-ramp property.
7. Multiplication:

1
Zzi(n)ze (n)] = %% X1(v) X (2/v) vy, (4.10)
c
ROC: ROC,, N Inverted ROC,,

where C' is a closed contour that encloses the origin and lies in the
common ROC.
8. Convolution:

Z[z1(n) * z2(n)] = X1(2)X2(2); ROC: ROC,, N ROC,, (4.11)

This last property transforms the time-domain convolution operation
into a multiplication between two functions. It is a significant property
in many ways. First, if X;(z) and X3(z) are two polynomials, then their
product can be implemented using the conv function in MATLAB.

0 EXAMPLE 44 TLet X1(2)=2+32""+427% and X2(2) =3 + 427" + 5272 + 6273, Determine
X3(Z) = Xl(Z)XQ(Z)

Solution From the definition of the z-transform, we observe that
z1(n) =42,3,4} and z2(n) = {3,4,5,6}
T T

Then the convolution of these two sequences will give the coefficients of the
required polynomial product.

MATLAB script:

>> x1 = [2,3,4]; x2 = [3,4,5,6]; x3 = conv(x1l,x2)
x3 = 6 17 34 43 38 24

Hence
X3(2) =6+ 172" +3427° +4327° + 3827 +2427°

Using the conv_m function developed in Chapter 2, we can also multiply
two z-domain polynomials corresponding to noncausal sequences. O

0 EXAMPLE45 Let X;(z) = 242432z ! and Xa(z) = 222 +42+ 3+ 52", Determine X3(z) =
X1(2)Xa(z2).
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Solution Note that
z1(n) =41,2,3} and za(n) = {2,4,3,5}
T T
Using the MATLAB script,

>> x1 = [1,2,3]; n1 = [-1:1]; x2 = [2,4,3,5]; n2 = [-2:1];
>> [x3,n3] = conv_m(x1,n1,x2,n2)

x3 =
2 8 17 23 19 15
n3 =
-3 -2 =il 0 1 2
we have
X3(2) =22° +82° + 172+ 23+ 1927 + 15277 O

In passing we note that to divide one polynomial by another one, we
would require an inverse operation called deconvolution [23, Chapter 6].
In MATLAB [p,r] = deconv(b,a) computes the result of dividing b by
a in a polynomial part p and a remainder r. For example, if we divide the
polynomial X3(z) in Example 4.4 by X;(z), as follows,

>> x3 = [6,17,34,43,38,24]; x1 = [2,3,4]; [x2,r] = deconv(x3,x1)
X2 =

then we obtain the coefficients of the polynomial X5(z) as expected. To
obtain the sample index, we will have to modify the deconv function as
we did in the conv_m function. This is explored in Problem P4.10. This
operation is useful in obtaining a proper rational part from an improper
rational function.

The second important use of the convolution property is in system
output computations as we shall see in a later section. This interpretation
is particularly useful for verifying the z-transform expression X(z) of a
casual sequence using MATLAB. Note that since MATLAB is a numerical
processor (unless the Symbolic toolbox is used), it cannot be used for
symbolic z-transform calculations. We will now elaborate on this. Let
z(n) be a sequence with a rational transform

where B(z) and A(z) are polynomials in 27!, If we use the coefficients of
B(z) and A(z) as the b and a arrays in the filter routine and excite this
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filter by the impulse sequence 6(n), then from (4.11) and using Z[6(n)] =
1, the output of the filter will be z(n). (This is a numerical approach
of computing the inverse z-transform; we will discuss the analytical ap-
proach in the next section.) We can compare this output with the given
x(n) to verify that X(z) is indeed the transform of z(n). This is illus-
trated in Example 4.6. An equivalent approach is to use the impz function
discussed in Chapter 2.

4.2.1 SOME COMMON zTRANSFORM PAIRS

Using the definition of z-transform and its properties, one can determine
z-transforms of common sequences. A list of some of these sequences is
given in Table 4.1.

TABLE 4.1 Some common z-transform pairs

Sequence Transform ROC
5(n) 1 Vz
u(n) 1_—12_1 |z| > 1
—u(—n—1) 17—12_1 2] <1
a™u(n) ﬁ 2| > |al
—b"u(—n —1) 1_72271 2| < o]
[a™ sinwon] u(n) T (Za(caossiz(g(,)z)f;:— Py |z] > |al
[a™ coswon] u(n) . (;a;cE:ZZ;;fl)z—ﬁj;Qz*? |z| > |al
na"u(n) % 2| > |al
—nb"u(—n —1) (171)1—;1_1)2 lz| < o]

O EXAMPLE 46 Using z-transform properties and the z-transform table, determine the z-
transform of

2(n) = (n — 2)(0.5)™? cos [g(n - 2)} u(n —2)

Solution Applying the sample-shift property,

™

X(2) = Z[z(n)] = 222 [n(0.5)n cos (?) u(n)}
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with no change in the ROC. Applying the multiplication by a ramp property,

L2 {z dZ[(0.5)" cos(Fn)u(n)] }

X(z) = dz

with no change in the ROC. Now the z-transform of (0.5)" cos(Fn)u(n) from
Table 4.1 is

n ™m B 1—(0.5cos %)zfl .
Z [(0.5) cos <?) u(n)} T T-2(0bcosZ)z + 02552 |z| > 0.5

1—0.25z"1

05t ro2p2 1>
Hence
d 1—0.25z"1
X(z) = —212 0.5
@)=-"7 {1— 0521 +0.252 2 } Sk
_ —2 -3 _ —4
1 0.25z7° + 0.5z 0.06252 ’ 2] > 0.5
1—2"14+0.75272 — 0.25273 + 0.06252—4

B 0.252% — 0.52* + 0.06252° 2> 0.5
 1—2"140.75272 — 0.2523 4+ 0.06252 4’ ‘

MATLAB verification: To check that this X (z) is indeed the correct expression,
let us compute the first 8 samples of the sequence z(n) corresponding to X(z),
as discussed before.

>> b = [0,0,0,0.25,-0.5,0.0625]; a = [1,-1,0.75,-0.25,0.0625] ;
>> [delta,n]=impseq(0,0,7)

delta =
1 0 0 0 0 0 0 0
n=
0 1 2 3 4 5 6 7
>> x = filter(b,a,delta) % check sequence
x =
Columns 1 through 4

0 0 0 0.25000000000000
Columns 5 through 8
-0.25000000000000 -0.37500000000000 -0.12500000000000 0.07812500000000
>> x = [(n-2).%(1/2) .7 (n-2) .*cos(pi*(n-2)/3)] .*stepseq(2,0,7) % original sequence
x =
Columns 1 through 4
0 0 0 0.25000000000000
Columns 5 through 8
-0.25000000000000 -0.37500000000000 -0.12500000000000 0.07812500000000

This approach can be used to verify the z-transform computations. O

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage L earning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



112 Chapter 4 W THE zTRANSFORM

4.3 INVERSION OF THE 2-TRANSFORM
i

From equation (4.3), the inverse z-transform computation requires an
evaluation of a complex contour integral that, in general, is a complicated
procedure. The most practical approach is to use the partial fraction ex-
pansion method. It makes use of the z-transform Table 4.1 (or similar
tables available in many textbooks). The z-transform, however, must be
a rational function. This requirement is generally satisfied in digital signal
processing.

Central Idea

e When X(2) is a rational function of 271, it can be expressed as a sum
of simple factors using the partial fraction expansion. The individual
sequences corresponding to these factors can then be written down
using the z-transform table.

The inverse z-transform procedure can be summarized as follows:

Method
e Given

bo+biz 4 by M

X =
(2) l4+az 4+ +ayz=N’

R, <|z| < Ruy (4.12)

e express it as

X =
(2) 1+a1z7t+---4+ayzN +

bo b1zl 4 b = (N=1) M-
0o+ 0127 + +Oo0Nn_12 Z Ckz_k

. N————’
P t 1 t
roper rational par polynomial part if M>N

where the first term on the right-hand side is the proper rational part,
and the second term is the polynomial (finite-length) part. This can
be obtained by performing polynomial division if M > N using the
deconv function.

e Perform a partial fraction expansion on the proper rational part of
X (z) to obtain

N
X(z2)=Y —"— 17 = Z Chz" (4.13)
k=1
M>N
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where py is the kth pole of X(z) and Ry is the residue at pg. It is
assumed that the poles are distinct for which the residues are given by

BO + 51271 + -+ EN,lz’(N’l)
1+a1z7 +--+ayz=V

Ry = (1—przt)

2=Pk

For repeated poles the expansion (4.13) has a more general form. If a
pole pi has multiplicity r, then its expansion is given by

DT R, YR S i
= (—pee ) Lot (L-pezt)’ (1 —przt)
(4.14)

where the residues Ry, are computed using a more general formula,
which is available in reference [23].
e assuming distinct poles as in (4.13), write z(n) as

ZRkZ {l—pkz_l} Z Ok(‘5 ’I”L—

M>N

e finally, use the relation from Table 4.1

Z_l[ 2 }: { piu(m) 2zl < Roe (*.15)

Z = Pk —pru(—n—1) [zx| = Roy

to complete z(n).

A similar procedure is used for repeated poles.

0  EXAMPLE 47 Find the inverse z-transform of z(z) = S S
322 —4z+1
Solution Write
1_-1
z z
X(z) = = 3
(2) 3(227%z+§) 17%—1+ z72
1, -1 1 1
_ 3% __ 3 2
e T N T
or

xo = (=) -1 (7=5)

Now, X (z) has two poles: z1 = 1 and z2 = %; and since the ROC is not specified,
there are three possible ROCs as shown in Figure 4.5.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage L earning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



114 Chapter 4 W THE zTRANSFORM

Im{z} Im{z} Im{z}

Re{z} Re{z} Re{z}
013 1 13 1 13 1

ROC, ROC, ROC,

FIGURE 4.5 The ROCs in Example 4.7

a. ROCi: 1 < |z] < oo. Here both poles are on the interior side of the ROCy;
that is, |z1] < Ry— =1 and |z2| < 1. Hence from (4.15)

z1(n) = %u(n) — % (%)n u(n)

which is a right-sided sequence.

b. ROC3: 0 < |2]| < % Here both poles are on the exterior side of the ROCq;
that is, 21| > Re4 = % and |22| > 1. Hence from (4.15)

wa(n) = %{—u(—n 1) - % (= (1) u(=n—1)}
1 /71\" 1
=3 (5) u(—n—1) — §u(fn -1)

which is a left-sided sequence.

c. ROCs: 1 < |z| < 1. Here pole z; is on the exterior side of the ROCs—that
is, |z1] > R.q = l—while pole 22 is on the interior side—that is, |22| < 1.
Hence from (4.15)

z3(n) = —%u(—n —-1)— % (%)nu(n)

which is a two-sided sequence. O

4.3.1 MATLAB IMPLEMENTATION
A MATLAB function residuez is available to compute the residue part
and the direct (or polynomial) terms of a rational function in 2~!. Let

bo+biz7t+ - +byz™™  B(z)

X = =
(2) ag+arz7t+---+ayz™V  A(z)
N M-N
= D C
— -
M>N
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O EXAMPLE 4.8

Solution

be a rational function in which the numerator and the denominator poly-
nomials are in ascending powers of z~1. Then [R,p,Cl=residuez(b,a)
computes the residues, poles, and direct terms of X (z) in which two poly-
nomials B(z) and A(z) are given in two vectors b and a, respectively.
The returned column vector R contains the residues, column vector p
contains the pole locations, and row vector C contains the direct terms.

If pk)=...=p(k+r-1) is a pole of multiplicity r, then the expansion in-
cludes the term of the form
R R Ryqr—
k — kt1 st ’“+—711T (4.16)
1 —prz (1 —pgz—1) (1 —prz—1)

which is different from (4.14).

Similarly, [b,al=residuez(R,p,C), with three input arguments and
two output arguments, converts the partial fraction expansion back to
polynomials with coefficients in row vectors b and a.

To check our residue calculations, let us consider the rational function

z
X&) =325

given in Example 4.7.

First rearrange X (z) so that it is a function in ascending powers of z7'.

271 04zt
X(2) = -
(2) 3—4z7 14272 3—4z7 14272

Now using the MATLAB script

>> b = [0,1]; a = [3,-4,1]; [R,p,C] = residuez(b,a)

R =
0.5000
-0.5000
p =
1.0000
0.3333
c =
(1
we obtain

=

X(2) =

1

2
T 11 1_1,4
1—2z 1 3%

as before. Similarly, to convert back to the rational function form,

>> [b,a]l = residuez(R,p,C)
b =

0.0000

0.3333
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2 =
1.0000
-1.3333
0.3333
so that
X(2) 0+ 227" P z
z) = = =
1—%2—1+%z—2 3—dz 14272 322 _-4z41
as before. O

O EXAMPLE 4.9 Compute the inverse z-transform of

X(2) = 1 . 12> 09
(1-0.92=1)"(140.9271)
Solution We will evaluate the denominator polynomial as well as the residues using the
MATLAB script:
>> b =1; a = poly([0.9,0.9,-0.9])
a =
1.0000 -0.9000 -0.8100 0.7290
>> [R,p,Cl=residuez(b,a)
R =
0.2500
0.5000
0.2500
p =
0.9000
0.9000
-0.9000
c =
1

Note that the denominator polynomial is computed using MATLAB’s polyno-
mial function poly, which computes the polynomial coefficients, given its roots.
We could have used the conv function, but the use of the poly function is more
convenient for this purpose. From the residue calculations and using the order
of residues given in (4.16), we have

0.25 0.5 0.25
X(z) = 0.9
(2) 1—-0.9z1 * (1—-0.92-1)? * 140.92-17 2] >
0.25 05 (09271 0.25
= + =z ( ) + |z| > 0.9

1-09271 097 (1-09z71)% 1+0.9271°
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Inversion of the z-Transform

Hence from Table 4.1 and using the z-transform property of time-shift,

z(n) = 0.25(0.9)"u(n) + g(n +1)(0.9)" " u(n + 1) + 0.25 (—0.9)™ u(n)

which,

upon simplification, becomes
z(n) = 0.75(0.9)"u(n) + 0.51(0.9)"u(n) + 0.25 (—0.9)" u(n)

MATLAB verification:

>> [delta,n]
x

Columns 1 through
1.00000000000000
Columns 5 through
1.96830000000000
>> x
X

Columns 1 through
1.00000000000000

impseq(0,0,7);

(0.75)%(0.9).

x = filter(b,a,delta) 7 check sequence

4

0.90000000000000  1.62000000000000 1.45800000000000
1.77147000000000 2.12576400000000 1.91318760000000

“n + (0.5)*n.*(0.9)."n + (0.25)*(-0.9)."n 7, answer sequence

4

0.90000000000000 1.62000000000000 1.45800000000000

Columns 5 through

1.96830000000000  1.77147000000000  2.12576400000000 1.91318760000000 O

[0 EXAMPLE 410 Determine the inverse z-transform of
1+0.4v227"
X(2) = +0.4v22
1—0.8v2271 +0.642—2
so that the resulting sequence is causal and contains no complex numbers.
Solution We will have to find the poles of X (z) in the polar form to determine the ROC

of the causal sequence.

MATLAB script:

>> b = [1,0.4*sqrt(2)]; a=[1,-0.8*sqrt(2),0.64];

>> [R,p,C] = residuez(b,a)
R =

0.5000 - 1.0000i

0.5000 + 1.0000i
p =

0.5657 + 0.5657i

0.5657 - 0.5657i
Cc =

1

>> Mp=(abs(p))’ % pole magnitudes
Mp =

0.8000 0.8000
>> Ap=(angle(p))’/pi ' pole angles in pi units
Ap =

0.2500 -0.2500
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From these calculations

0.5—j 0.5+
1-08eT5z=1  1-0.8e7%z1
and from Table 4.1, we have

z(n) = (0.5 —5)0.8"™ T u(n) + (0.5 + ) 0.8"¢ 75 "u(n)

X(z) = , ]2 >08

0.8"[0.5{e™ T 4 e E"} — j{e™E" — e T} u(n)

0.8" [COS (%) + 2sin (%)} u(n)

MATLARB verification:

>> [delta, n] = impseq(0,0,6);
x = filter(b,a,delta) J check sequence
x =
Columns 1 through 4
1.00000000000000  1.69705627484771  1.28000000000000  0.36203867196751
Columns 5 through 8
-0.40960000000000 -0.69511425017762 -0.52428800000000 -0.14829104003789
>> x = ((0.8).7n).*(cos(pi*n/4)+2*sin(pi*n/4))
x =
Columns 1 through 4
1.00000000000000  1.69705627484771  1.28000000000000  0.36203867196751
Columns 5 through 8
-0.40960000000000 -0.69511425017762 -0.52428800000000 -0.14829104003789 O

4.4 SYSTEM REPRESENTATION IN THE z-DOMAIN
i

Similar to the frequency response function H(e’“), we can define the
z-domain function, H(z), called the system function. However, unlike
H(e’¥), H(z) exists for systems that may not be BIBO stable.

DEFINITION 1 [The System Function] The system function H(z) is given by

H(z) £ Z[h(n)] =Y h(n)z™" Ru- <|2| < Ry (4.17)

Using the convolution property (4.11) of the z-transform, the output
transform Y'(z) is given by

Y(2) =H(z) X(2) : ROC, =ROC,NROC, (4.18)
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provided ROC, overlaps with ROCj. Therefore a linear and time-
invariant system can be represented in the z-domain by

X(2) — —Y(z) = H(z) X(2)

441 SYSTEM FUNCTION FROM THE DIFFERENCE
EQUATION REPRESENTATION
When LTT systems are described by a difference equation

N M
y(n) + Z ary(n — k) = Z bex(n —£) (4.19)
k=1 £=0

the system function H(z) can easily be computed. Taking the z-transform
of both sides, and using properties of the z-transform,

N M
Y(z)+ Z apz "Y (2) = Z bzt X (2)
k=1 =0
or

aY()  SMobet B(2)

H(z) = X(2) 143N ez k A(2)

boz~M (zM +--- 4+ %)
= — (4.20)
2N (N 4+ +an)

After factorization, we obtain

N—-M Hévzl(z )

[T (= — )
where zs are the system zeros and py’s are the system poles. Thus H(z)
(and hence an LTT system) can also be represented in the z-domain using
a pole-zero plot. This fact is useful in designing simple filters by proper
placement of poles and zeros.

To determine zeros and poles of a rational H(z), we can use the
MATLAB function roots on both the numerator and the denominator
polynomials. (Its inverse function poly determines polynomial coefficients
from its roots, as discussed in the previous section.) It is also possible to
use MATLAB to plot these roots for a visual display of a pole-zero plot.
The function zplane(b,a) plots poles and zeros, given the numerator
row vector b and the denominator row vector a. As before, the symbol o
represents a zero and the symbol x represents a pole. The plot includes
the unit circle for reference. Similarly, zplane(z,p) plots the zeros in
column vector z and the poles in column vector p. Note very carefully the
form of the input arguments for the proper use of this function.

H(z) =bg 2 (4.21)
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4.42 TRANSFER FUNCTION REPRESENTATION

If the ROC of H(z) includes a unit circle (z = /%), then we can evaluate

H(z) on the unit circle, resulting in a frequency response function or
transfer function H(e’*). Then from (4.21)

M, s

H(e'%) = by e N—M)w —H}V (e?“" )

I (e — pr)

The factor (e/“ — z;) can be interpreted as a vector in the complex z-plane
from a zero z, to the unit circle at z = e/*, while the factor (e/“ — py)
can be interpreted as a vector from a pole pj, to the unit circle at z = e/*.
This is shown in Figure 4.6. Hence the magnitude response function

(4.22)

|€.jw _Zl| |e.jw — ZM|

H(e)| = |bo| — :
| ( )| |0||63w—p1|"'|83“’—p1\1|

(4.23)

can be interpreted as a product of the lengths of vectors from zeros to the
unit circle divided by the lengths of vectors from poles to the unit circle
and scaled by |bg|. Similarly, the phase response function

M N
LH() =[0 or 7] + [(V = M)w] + 3 £ —2) =3 £ —p)
1 1
Constant Linear
Nonlinear

(4.24)

can be interpreted as a sum of a constant factor, a linear-phase factor,
and a nonlinear-phase factor (angles from the “zero vectors” minus the
sum of angles from the “pole vectors”).

4.43 MATLAB IMPLEMENTATION
In Chapter 3, we plotted magnitude and phase responses in MATLAB
by directly implementing their functional forms. MATLAB also provides

Im{z}

Re{z}

Unit
circle

FIGURE 4.6 Pole and zero vectors
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a function called freqz for this computation, which uses the preceding
interpretation. In its simplest form, this function is invoked by

[H,w] = freqz(b,a,N)

which returns the N-point frequency vector w and the N-point complex

frequency response vector H of the system, given its numerator and de-

nominator coefficients in vectors b and a. The frequency response is eval-

uated at N points equally spaced around the upper half of the unit circle.

Note that the b and a vectors are the same vectors we use in the filter

function or derived from the difference equation representation (4.19).
The second form

[H,w] = freqz(b,a,N, ’whole’)

uses N points around the whole unit circle for computation.
In yet another form

H = freqz(b,a,w)

it returns the frequency response at frequencies designated in vector w,
normally between 0 and 7. It should be noted that the freqz function can
also be used for numerical computation of the DTFT of a finite-duration,
causal sequence x(n). In this approach, b = x and a = 1.

0 EXAMPLE 411 Given a causal system
y(n) = 0.9y(n — 1) + w(n)

a. Determine H(z) and sketch its pole-zero plot.
b. Plot |H(e’¥)| and ZH (e’*).
c. Determine the impulse response h(n).

Solution The difference equation can be put in the form
y(n) = 0.9y(n — 1) = z(n)
a. From (4.21)

1

since the system is causal. There is one pole at 0.9 and one zero at the origin.
We will use MATLAB to illustrate the use of the zplane function.

>>b = [1, 0]; a = [1, -0.9]; zplane(b,a)
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Pole-Zero Plot
T
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0.4r !

Imaginary part
o
T
o
X
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Real Part

FIGURE 4.7 Pole-zero plot of Example 4.11a

Note that we specified b=[1,0] instead of b=1 because the zplane function
assumes that scalars are zeros or poles. The resulting pole-zero plot is shown
in Figure 4.7.

b.Using (4.23) and (4.24), we can determine the magnitude and phase of
H (). Once again we will use MATLAB to illustrate the use of the freqz
function. Using its first form, we will take 100 points along the upper half of
the unit circle.

MATLAB Script:

>> [H,w] = freqz(b,a,100); magH = abs(H); phaH = angle(H);

>> subplot(2,1,1);plot(w/pi,magH) ;grid

>> xlabel(’frequency in pi units’); ylabel(’Magnitude’);

>> title(’Magnitude Response’)

>> subplot(2,1,2);plot(w/pi,phal/pi);grid

>> xlabel(’frequency in pi units’); ylabel(’Phase in pi units’);
>> title(’Phase Response’)

The response plots are shown in Figure 4.8. If you study these plots carefully,
you will observe that the plots are computed between 0 < w < 0.997 and
fall short at w = m. This is due to the fact that in MATLAB the lower half
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Magnitude Response
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FIGURE 4.8 Frequency response plots in Example 4.11

of the unit circle begins at w = w. To overcome this problem, we will use the
second form of the freqz function as follows.

>> [H,w] = freqz(b,a,200, ’whole’);
>> magH = abs(H(1:101)); phaH = angle(H(1:101));

Now the 101st element of the array H will correspond to w = m. A similar
result can be obtained using the third form of the freqz function.

>> w = [0:1:100]*pi/100; H = freqz(b,a,w);
>> magH = abs(H); phaH = angle(H);

In the future we will use any one of these forms, depending on our conve-
nience. Also note that in the plots we divided the w and phaH arrays by pi
so that the plot axes are in the units of 7w and easier to read. This practice
is strongly recommended.

c. From the z-transform in Table 4.1

1

_ —1
hin) = 2 [1 209021

2| > 0.9} — (0.9)"u(n) O
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[0 EXAMPLE 412 Given that
z4+1
H(z)= — =7
(2) = 5 —09: 7081
is a causal system, find

. its transfer function representation,
its difference equation representation, and
c. its impulse response representation.

o p

Solution The poles of the system function are at z = 0.9/ + 7/3. Hence the ROC of
this causal system is |z| > 0.9. Therefore the unit circle is in the ROC, and the
discrete-time Fourier transform H(e’“) exists.

a. Substituting z = ¢/“ in H(z),

v 41 _ e 1
ei2w —0.9eiw + 0.81  (ed¥ — 0.9ei7/3)(edw — 0.9e=97/3)
b. Using H(z) =Y (2)/X (),

Y(z) z+1 (z_2> 27 4272

H() =

X(z) 22-092+081\z2) 1-0921+08lz2
Cross multiplying,

Y (2) —0.927'Y(2) + 0.8127°Y (2) = 27 ' X (2) + 2 ° X (2)
Now taking the inverse z-transform,

y(n) —0.9y(n — 1) + 0.81ly(n — 2) = z(n — 1) + z(n — 2)
or

y(n) =09y(n —1) — 0.81y(n — 2) + x(n — 1) + z(n — 2)

c. Using the MATLAB script,

>>b = [0,1,1]; a = [1,-0.9,0.81]; [R,p,C] = residuez(b,a)

R =

-0.6173 - 0.9979i

-0.6173 + 0.9979i
p =

0.4500 + 0.7794i

0.4500 - 0.7794i
C =

1.2346

>> Mp = (abs(p))’
Mp =

0.9000 0.9000
>> Ap = (angle(p))’/pi
Ap =

0.3333 -0.3333
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we have

—0.6173 + j0.9979  —0.6173 — 50.9979
1—0.9e-9m/3z-1 1—0.9ei7/32=1

H(z) =1.2346 + |z| > 0.9

Hence from Table 4.1

h(n) = 1.23466(n) + [(—0.6173 + j0.9979)0.9"e7™"/3
+(—0.6173 — j0.9979)0.9™ ¢’ ™/ *Ju(n)
= 1.23466(n) + 0.9"[—1.2346 cos(mn/3) + 1.9958 sin(wn/3)]u(n)
= 0.9"[—1.2346 cos(mn/3) + 1.9958 sin(mn/3)]u(n — 1)
The last step results from the fact that h(0) = 0. O

4.4.4 RELATIONSHIPS BETWEEN SYSTEM REPRESENTATIONS

In this and the previous two chapters, we developed several system rep-
resentations. Figure 4.9 depicts the relationships among these representa-
tions in a graphical form.

Express H(z) in 7', H(2)

cross multiply, and
take inverse

Take inverse
z-transform

Take
z-transform,
solve for Y/X

Take
z-transform

Diff Equation — hin)
—_
P
Substitute Ve /l
z=¢el® // Take inverse /
/ DTFT /
* / PR .
Take DTFT, | _- Take Fourier

solve for Y/X Hiel) —— transform

FIGURE 4.9 System representations in pictorial form

4.45 STABILITY AND CAUSALITY

For LTI systems, the BIBO stability is equivalent to Y.~ |h(k)| < oco.
From the existence of the discrete-time Fourier transform, this stability
implies that H (/) exists, which further implies that the unit circle |z| =
1 must be in the ROC of H(z). This result is called the z-domain stability
theorem; therefore the dashed paths in Figure 4.9 exist only if the system
is stable.
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] THEOREM 2 z-Domain LTI Stability
An LTI system is stable if and only if the unit circle is in the ROC of

For LTI causality we require that h(n) = 0, for n < 0 (i.e., a right-
sided sequence). This implies that the ROC of H(z) must be outside some
circle of radius Ry, . This is not a sufficient condition since any right-sided
sequence has a similar ROC. However, when the system is stable, then its
causality is easy to check.

] THEOREM 3 z-Domain Causal LTI Stability
A causal LTI system is stable if and only if the system function H(z)
has all its poles inside the unit circle.

0 EXAMPLE 4.13 A causal LTI system is described by the following difference equation:
y(n) = 0.81y(n — 2) + z(n) — z(n — 2)

Determine

. the system function H(z),

. the unit impulse response h(n),

. the unit step response v(n), that is, the response to the unit step u(n), and

. the frequency response function H(e’*), and plot its magnitude and phase
over 0 < w <.

o T

Solution Since the system is causal, the ROC will be outside a circle with radius equal

to the largest pole magnitude.

a. Taking the z-transform of both sides of the difference equation and then

solving for Y'(z)/X (z) or using (4.20), we obtain
1—272 1—272
H(z) = = 0.9
() =082 ~ G0 a—o9) A7
b. Using the MATLAB script for the partial fraction expansion,

>> b = [1,0,-1]; a = [1,0,-0.81]; [R,p,C] = residuez(b,a);

R =
-0.1173
-0.1173

P =
-0.9000

0.9000

C =

1.2346
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we have

1
e 01173

H(z2) = 1.2346 = 01173 "o

1
T—og1 F1>09

or from Table 4.1

h(n) = 1.23465(n) — 0.1173 {1 + (—1)"} (0.9)"u(n)

c. From Table 4.1 Z[u(n)] = U(z) = %, |z| > 1. Hence
z

1—

[ a+ehHa-=h Ml 1 |+ > 09nz>1

(140.9271) (1 —-0.9271) 1
-1
T+ 0.9z1j) ?1 —0.9271)’ |z| > 0.9
or
V(2) = 1.0556—— — 0.0556— . |2| > 0.9
1-0.9z71 1+0.9z1
Finally,

v(n) = [1.0556(0.9)" — 0.0556 (—0.9)"] u(n)

Note that in the calculation of V'(z) there is a pole-zero cancellation at z = 1.
This has two implications. First, the ROC of V() is still {|z| > 0.9} and not
{]z| > 0.9N|z| > 1= |z| > 1}. Second, the step response v(n) contains no
steady-state term wu(n).

d. Substituting z = ¢/“ in H(z),

; 1 —ed2
Jwy
H(E™) = g 51072

We will use the MATLAB script to compute and plot responses.

>> w = [0:1:500]*pi/500; H = freqz(b,a,w);

>> magH = abs(H); phaH = angle(H);

>> subplot(2,1,1); plot(w/pi,magH); grid

>> xlabel(’frequency in pi units’); ylabel(’Magnitude’)

>> title(’Magnitude Response’)

>> subplot(2,1,2); plot(w/pi,phaH/pi); grid

>> xlabel(’frequency in pi units’); ylabel(’Phase in pi units’)
>> title(’Phase Response’)

The frequency response plots are shown in Figure 4.10. O
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Magnitude Response
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FIGURE 4.10 Frequency response plots for Example 4.13

4.5 SOLUTIONS OF THE DIFFERENCE EQUATIONS
i

In Chapter 2 we mentioned two forms for the solution of linear constant
coefficient difference equations. One form involved finding the particu-
lar and the homogeneous solutions, while the other form involved find-
ing the zero-input (initial condition) and the zero-state responses. Using
z-transforms, we now provide a method for obtaining these forms. In ad-
dition, we will also discuss the transient and the steady-state responses.
In digital signal processing, difference equations generally evolve in the
positive n direction. Therefore our time frame for these solutions will be
n > 0. For this purpose we define a version of the bilateral z-transform
called the one-sided z-transform.

DEFINITION 4 The One-sided z Transform
The one-sided z-transform of a sequence x(n) is given by

Ze(n)u(n)] 2 X[ =Y a(n)z" (4.25)

n=0

(1>

27 [z(n)]
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Then the sample shifting property is given by

Zt[z(n - k)] = Z[z(n — k)u(n)]

= Z z(n—k)z7" = Z z(m)z~(mFk)
n=0 m=—k
—1 00
— Z m(m)z_("”'k) + Z ZC(m)Z_"L‘| Z—k:
m=—k m=0

ZHzn—k)] =a(-1)2 Fa(=2)22F 4 (k) +27FX T (2) (4.26)

This result can now be used to solve difference equations with nonzero
initial conditions or with changing inputs. We want to solve the difference
equation

N M
1—|—Zaky(n— k) = Z bmax(n—m), n>0
k=1 m=0
subject to these initial conditions:
{y(i),i=-1,...,—N} and {z(i),i=-1,...,—M}.
We now demonstrate its solution using an example.
[0 EXAMPLE 414 Solve
3 1
y(n) = Sy(n = 1)+ sy(n = 2) =a(n), n>0

where

subject to y(—1) = 4 and y(—2) = 10.

Solution Taking the one-sided z-transform of both sides of the difference equation, we
obtain
n 3 it 1 -1 —2y+ 1
Y@ = gly(-D)+27 YT @+ 5lu(=2) +2y(-D)+2 Y () = T
1

Substituting the initial conditions and rearranging,

_ 1 _ 1
YT (2) 1—§z Y427 =

= 4 (1-2"
5 5 1*i2‘1+( 277)
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or
L
1— 3271 1—-2271
YT(z) = 4 4.27
() 1—%2—1+%Z_2 1*32_1+%Z_2 ( )
Finally,
9_9,-1,1,-2
Y+(Z) _ — 2% 122 —
(I— L= )(1—2 -1z
Using the partial fraction expansion, we obtain
1 2 1
+0.) — 3 3
Ve =T 3271 i 3271 (4.28)
After inverse transformation the solution is
\"™ 2 1 /1\"
v =|(5) +5+5(3) Jue (4.29)
O

Forms of the solutions The preceding solution is the complete re-
sponse of the difference equation. It can be expressed in several forms.

e Homogeneous and particular parts:

y(n) :K%) + ;] u(n) + % G)nu(n)

Homogeneous part Particular part

The homogeneous part is due to the system poles, and the particular
part is due to the input poles.

e Transient and steady-state responses:

y(n) :[% (i)n 4 (%)n] u(n) + %u(n)

Steady-state response

Transient response

The transient response is due to poles that are inside the unit circle,
whereas the steady-state response is due to poles that are on the unit
circle. Note that when the poles are outside the unit circle, the response
is termed an unbounded response.

e Zero-input (or initial condition) and zero-state responses:
In equation (4.27) Y (2) has two parts. The first part can be inter-
preted as
Yz5(2) = H(2)X (2)
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while the second part as
YZ[(Z) = H(Z)ch(z)

where X1c(z) can be thought of as an equivalent initial-condition in-
put that generates the same output Yz; as generated by the initial
conditions. In this example x;o(n) is

xre(n) ={1,-2}
T

Now taking the inverse z-transform of each part of (4.27), we write the
complete response as

=B )+ ) o

Zero-state response Zero-input response

From this example, it is clear that each part of the complete solution
is, in general, a different function and emphasizes a different aspect of
system analysis.

451 MATLAB IMPLEMENTATION

In Chapter 2 we used the filter function to solve the difference equation,
given its coefficients and an input. This function can also be used to find
the complete response when initial conditions are given. In this form the
filter function is invoked by

y = filter(b,a,x,xic)

where xic is an equivalent initial-condition input array. To find the com-
plete response in Example 4.14, we will use the MATLAB script

>> n = [0:7]; x = (1/4).7n; xic = [1, -2];
>> format long; yl1 = filter(b,a,x,xic)
y1 =
Columns 1 through 4
2.00000000000000  1.25000000000000  0.93750000000000  0.79687500000000
Columns 5 through 8
0.73046875000000 0.69824218750000  0.68237304687500  0.67449951171875
>> y2 = (1/3)*(1/4)."n+(1/2) ."n+(2/3)*ones(1,8) % MATLAB Check
y2 =
Columns 1 through 4
2.00000000000000  1.25000000000000  0.93750000000000  0.79687500000000
Columns 5 through 8
0.73046875000000 0.69824218750000 0.68237304687500 0.67449951171875
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which agrees with the response given in (4.29). In Example 4.14 we com-
puted z;c(n) analytically. However, in practice, and especially for large-
order difference equations, it is tedious to determine x;¢(n) analytically.
MATLAB provides a function called filtic, which is available only in
the Signal Processing toolbox. It is invoked by

xic = filtic(b,a,Y,X)

in which b and a are the filter coefficient arrays and Y and X are the initial-
condition arrays from the initial conditions on y(n) and x(n), respectively,
in the form

Y [y(_l)a y(_2),"'a y(_N)]
X = [z(-1), 2(-2),..., 2(—M)]

If z(n) =0, n < —1 then X need not be specified in the filtic function.
In Example 4.14 we could have used

>> Y = [4, 10]; xic = filtic(b,a,Y)
xic =
1 -2

to determine x;c(n).

0 EXAMPLE 4.15 Solve the difference equation

y(n) = % [z(n) +z(n—1) + z(n — 2)] +0.95y(n — 1) — 0.9025y(n — 2), n >0

where z(n) = cos(mn/3)u(n) and
Y1) = =2, y(-2) = =3 a(-1)=1, #(~2) =1

First determine the solution analytically and then by using MATLAB.

Solution Taking a one-sided z-transform of the difference equation
YT(2) = %[X+(z) +az(-1)+ 2 "X () +2(=2) + 2z te(—1) + 22X T (2)]
+0.95[y(=1) + 27 'Y T (2)] = 0.9025[y(—2) + 2z 'y(=1) + 2 °Y ()]
and substituting the initial conditions, we obtain
1_-1 1_-2

Lyl-tyly 1.4742 +2.13832""

Y+ = X+

()= 10951 10002522 T 100557 + 0.0025: 2

Clearly, z7c(n) = [1.4742,2.1383]. Now substituting X (2) = %
Y, Z1c = [l , 2. . g =T

and simplifying, we will obtain Y *(z) as a rational function. This simplification
and further partial fraction expansion can be done using MATLAB.
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MATLAB script:

[1,-0.95,0.9025] ;

>> b = [1,1,1]1/3; a =
= [1,1]; =xic=filtic(b,a,Y,X)

>> Y = [-2,-3]; X
xic =

1.4742 2.1383
>> bxplus = [1,-0.5]; axplus = [1,-1,1]; % X(z) transform coeff.
>> ayplus = conv(a,axplus) % Denominator of Yplus(z)
ayplus =

1.0000 -1.9500 2.8525 -1.8525 0.9025
>> byplus = conv(b,bxplus)+conv(xic,axplus) % Numerator of Yplus(z)
byplus =

1.8075 0.8308 -0.4975 1.9717
>> [R,p,C] = residuez(byplus,ayplus)

R =

0.0584 + 3.9468i 0.0584 - 3.9468i 0.8453 + 2.03111i 0.8453 - 2.0311i
p =

0.5000 - 0.8660i 0.5000 + 0.8660i 0.4750 + 0.8227i 0.4750 - 0.8227i
C =

[
>> Mp = abs(p), Ap = angle(p)/pi % Polar form
Mp =
1.0000 1.0000 0.9500 0.9500

Ap =

-0.3333 0.3333 0.3333 -0.3333

Hence

1.8075 + 0.83082 "1 — 0.4975272 +1.971723
1—1.952"1 4 2.85252—2 — 1.85252—3 + 0.90252—4

_0.0584 4 j3.9468 = 0.0584 — 73.9468
T 1—eim/3z-1 1—eim/3z-1

YH(z) =

0.8453 + j2.0311  0.8453 — 52.0311
1—0.95ei7/32=1 = 1 —0.95e—37/3z-1

Now from Table 4.1
y(n) = (0.0584 + j3.9468) e /™"/% 1 (0.0584 — j3.9468) & ™"/3
+ (0.8453 + j2.031) (0.95)™ ¢?™™/3 4 (0.8453 — 52.031) (0.95)™ ¢ /™"/3
= 0.1169 cos(mn/3) 4+ 7.8937 sin(7n/3)
+ (0.95)™ [1.6906 cos(mn/3) — 4.0623 sin(rn/3)], n >0
The first two terms of y(n) correspond to the steady-state response, as well as
to the particular response, while the last two terms are the transient response
(and homogeneous response) terms.
To solve this example using MATLAB, we will need the filtic function,

which we have already used to determine the zrc(n) sequence. The solution
will be a numerical one. Let us determine the first 8 samples of y(n).
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MATLARB script:

>> n = [0:7]; x = cos(pi*n/3); y = filter(b,a,x,xic)
y =
Columns 1 through 4
1.80750000000000  4.35545833333333  2.83975000000000 -1.56637197916667
Columns 5 through 8
-4.71759442187500 -3.40139732291667 1.35963484230469 5.02808085078841
% Matlab Verification
>> A=real(2#R(1)); B=imag(2*R(1)); C=real(2*R(3)); D=imag(2*R(4));
>> y=Axcos (pi*n/3)+B*sin(pi*n/3)+((0.95) . n) .*(Cxcos(pi*n/3)+D*sin(pi*n/3))
y =
Columns 1 through 4
1.80750000000048  4.35545833333359  2.83974999999978 -1.56637197916714
Columns 5 through 8
-4.71759442187528 -3.40139732291648 1.35963484230515  5.02808085078871 [

4.6 PROBLEMS

P4.1 Determine the z-transform of the following sequences using the definition (4.1). Indicate the
region of convergence for each sequence and verify the z-transform expression using
MATLAB.

1. o(n) = {3,2,1,-2, —3}.
T
z(n) = (0.8)"u(n — 2). Verify the z-transform expression using MATLAB.
z(n) = [(0.5)™ + (—0.8)"]u(n). Verify the z-transform expression using MATLAB.
z(n) = 2" cos(0.4mn)u(—n).
z(n) = (n+1)(3)"u(n). Verify the z-transform expression using MATLAB.
P4.2 Consider the sequence z(n) = (0.9)" cos(mn/4)u(n). Let

y(n) = { z(n/2), n=0,42,44, -

AN I

0, otherwise.

1. Show that the z-transform Y (z) of y(n) can be expressed in terms of the z-transform
X (2) of x(n) as Y(z) = X(2?).

2. Determine Y (z).

3. Using MATLAB, verify that the sequence y(n) has the z-transform Y'(z).

P4.3 Determine the z-transform of the following sequences using the z-transform table and the
z-transform properties. Express X (z) as a rational function in z~!. Verify your results using
MATLAB. Indicate the region of convergence in each case, and provide a pole-zero plot.

1. z(n) =26(n —2) + 3u(n —3)
2. z(n) = 3(0.75)" cos(0.3mn)u(n) + 4(0.75)" sin(0.37n)u(n)

3. z(n) = nsin(F)u(n) + (0.9)"u(n — 2)
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a(n) =n*(2/3)"u(n — 1)
(n) = (n—3)(3)" " cos{ 5 (n — 1)}u(n)
P4.4 Let z(n) be a complex-valued sequence with the real part zr(n) and the imaginary part
zi(n).
1. Prove the following z-transform relations:
X(2) + X"(2")
2
2. Verify these relations for z(n) = exp {(—1 + j0.27)n} u(n).

X(z) — X*(z%)

Xr(2) £ Z[zr(n)] = and  X1(2) £ Z[z1(n)] =

P4.5 The z-transform of x(n) is X (2) = 1/(1 +0.527"), |z| > 0.5. Determine the z-transforms of
the following sequences and indicate their region of convergence.
1. z1(n) =23 —n) + z(n — 3)

z2(n) = (1 +n +n?)z(n)

z3(n) = (1)"(n —2)

za(n) = z(n+2) *x z(n — 2)

z5(n) = cos(mn/2)z*(n)

ARl o

P4.6 Repeat Problem P4.5 if

14271

1
Xz)= ——"—; > =
(2) 1+%z—1+éz—2 12l 2

P4.7 The inverse z-transform of X (z) is z(n) = (1/2)"u(n). Using the z-transform properties,
determine the sequences in each of the following cases.

1. Xi(2) = =1 X(z)

2. Xo(2) = 2X(271)

3. X3(2) =2X(32) +3X(2/3)
4. X4(2) = X(2)X(z7Y)

5. X5(2) = 22%

P4.8 If sequences x1(n), z2(n), and z3(n) are related by x3(n) = z1(n) * x2(n), then

i z3(n) = ( f: a:l(n)> ( i xz(n)>

n=-—oo n=-—00 n=-—oo

1. Prove this result by substituting the definition of convolution in the left-hand side.

2. Prove this result using the convolution property.

3. Verify this result using MATLABand choosing any two random sequences x1(n), and
z2(n).

P4.9 Determine the results of the following polynomial operations using MATLAB.
1 X1(2) = (122" 43272 — 42734+ 327 =222+ 279)

2. Xo(2) = (22 =22+ 3+227  + 272 - 279

3. Xa(2) = (1+ 271 +272)3

4. X4(2) = X1(2)X2(2) + X5(2)

5. Xs(2) = (271 = 3273 4 227° + 5277 — 279) (2 + 327 + 22° 4 42%)
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P4.10 The deconv function is useful in dividing two causal sequences. Write a MATLAB function
deconv._m to divide two noncausal sequences (similar to the conv function). The format of
this function should be

function [p,np,r,nr] = deconv_m(b,nb,a,na)
% Modified deconvolution routine for noncausal sequences
% function [p,np,r,nr] = deconv_m(b,nb,a,na)

% p = polynomial part of support npl <= n <= np2

% np = [npl, np2]

% r = remainder part of support nrl <= n <= nr2

% nr = [nrl, nr2]

% b = numerator polynomial of support nbl <= n <= nb2

% nb = [nbl, nb2]

% a = denominator polynomial of support nal <= n <= na2
% na = [nal, na2]

Check your function on the following operartion

P4z l4dz 4248
z+24 271

327243273

=(z—142z"1—2z72
(z + 2z z )+z+2+z*1

P4.11 Determine the following inverse z-transforms using the partial fraction expansion method.

L Xi(z)=(1—2""—4272+427%) /(1 - LL27" + 13272 — 1:7%)_ The sequence is rightsided.

2. Xo(z) = (142" =422 +427%) /(1 — 2271+ L8,72 — 1573). The sequence is
absolutely summable.

3. X3(2) = (2° — 322 +42 4+ 1)/(2* — 42® + 2 — 0.16). The sequence is leftsided.

4. X4(2) = 2/(2* +22° +1.252 +0.25), |2| > 1

5. X5(2) = z/(2* — 0.25)%, |2| < 0.5

P4.12 Consider the sequence
z(n) = Ac(r)" cos(mvon)u(n) + As(r)" sin(rvon)u(n) (4.30)

The z-transform of this sequence is a 2-order (proper) rational function that contains a
complex-conjugate pole pair. The objective of this problem is to develop a MATLAB
function that can be used to obtain the inverse z-transform of such a rational function so
that the inverse does not contain any complex numbers.

1. Show that the z-transform of z(n) in (4.30) is given by

bo + b1271

X(2) =
(2) 14+ a1z7t + azz—2

S E (4.31)

where

bo = Ac; b1 = r[Assin(mvo) — Ac cos(mvo)]; a1 = —2r cos(mvo); as = 1’ (4.32)
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2. Using (4.32), determine the signal parameters Ac, As, r, and vo in terms of the rational
function parameters bo, b1, a1, and as.

3. Using your results in part b above, design a MATLABfunction, invCCPP, that computes
signal parameters using the rational function parameters. The format of this function
should be:

function [As,Ac,r,v0] = invCCPP(bO,bl,al,a2)

P4.13 Suppose X (z) is given as follows:

B 2+327"

T 1—2"140812"2’

1. Using the MATLABfunction invCCPP given in Problem P4.12, determine z(n) in a form
that contains no complex numbers.

2. Using MATLAB, compute the first 20 samples of z(n), and compare them with your
answer in the above part.

X(z)

|z] > 0.9

P4.14 The z-transform of a causal sequence is given as

—245.652"1 — 2.88272

X(z)= 4.33
() = {01 1100922 + 0.648: 7 (433)
which contains a complex-conjugate pole pair as well as a real-valued pole.
1. Using the residuez function express (4.33) as
-1
X(=—tJt)= () (4.34)

R G G E R T GO P

Note that you will have to use the residuez function in both directions.

2. Now using your function invCCPP and the inverse of the real-valued pole factor,
determine the causal sequence z(n) from the X (z) in (4.34) so that it contains no
complex numbers.

P4.15 For the linear and time-invariant systems described by the following impulse responses,

determine (i) the system function representation, (ii) the difference equation representation,

(iii) the pole-zero plot, and (iv) the output y(n) if the input is z(n) = (l)n u(n).

1. h(n) =5(1/4)"u(n)

2. h(n) =n(1/3)"u(n) + (—=1/4)"u(n)

3. h(n) =3(0.9)" cos(mn/4 + 7/3)u(n + 1)
(

0.5)" sin[(n + 1)7/3] u(n)
sin(7/3)

5. h(n) = [2 — sin(mn)]u(n)

4. h(n) =

P4.16 Consider the system shown below.

1. Using the z-transform approach, show that the impulse response, h(n), of the overall
system is given by

h(n) = 8(n) — %5(77, —1)
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2. Determine the difference equation representation of the overall system that relates the
output y(n) to the input z(n).

3. Is this system causal? BIBO stable? Explain clearly to receive full credit.

4. Determine the frequency response H(e’*) of the overall system.

5. Using MATLAB, provide a plot of this frequency response over 0 < w < 7.

P4.17 For the linear and time-invariant systems described by the following system functions,
determine (i) the impulse response representation, (ii) the difference equation
representation, (iii) the pole-zero plot, and (iv) the output y(n) if the input is
z(n) = 3cos(mn/3)u(n).

1. H(z) =(2+1)/(z — 0.5), causal system
2. H(z) = (1427 +272)/(1+0.5271 — 0.25272), stable system
3. H(z) = (2* = 1)/(z — 3)?, anticausal system
z 1-05z""
4. H(z) = T + 5o, 1 stable system
5. H(z) = (1427 +272)?

P4.18 For the linear, causal, and time-invariant systems described by the following difference
equations, determine (i) the impulse response representation, (ii) the system function
representation, (iii) the pole-zero plot, and (iv) the output y(n) if the input is
z(n) = 2(0.9)"u(n).

1. y(n) =[z(n) +2z(n—1) +z(n—3)] /4

2. y(n) = z(n) + 0.52(n — 1) — 0.5y(n — 1) + 0.25y(n — 2)

3. y(n) =2z(n) + 0.9y(n — 1)

4. y(n) = —0.45z(n) — 0.4x(n — 1) + z(n — 2) + 0.4y(n — 1) + 0.45y(n — 2)

5. y(n) =0 _ (0.8)"x(n —m) — >, (0.9) y(n — 0)

P4.19 The output sequence y(n) in Problem P4.18 is the total response. For each of the systems
given in Problem P4.18, separate y(n) into (i) the homogeneous part, (ii) the particular
part, (iii) the transient response, and (iv) the steady-state response.

P4.20 A stable system has four zeros and four poles as given here:

zeros: £ 1, £j1 Poles: +0.9, +50.9
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It is also known that the frequency response function H (ej“’) evaluated at w = 7/4 is equal
to 1, i.e.,

H(™ ") =1

1. Determine the system function H(z), and indicate its region of convergence.

2. Determine the difference equation representation.

3. Determine the steady-state response yss(n) if the input is z(n) = cos(mn/4)u(n).
4. Determine the transient response y¢,(n) if the input is z(n) = cos(wn/4)u(n).

P4.21 A digital filter is described by the frequency response function
H (') = [1 + 2cos(w) + 3 cos(2w)] cos (%) Pt

1. Determine the difference equation representation.

2. Using the freqz function, plot the magnitude and phase of the frequency response of the
filter. Note the magnitude and phase at w = 7/2 and at w = 7.

3. Generate 200 samples of the signal xz(n) = sin(7n/2) + 5cos(mn), and process through
the filter to obtain y(n). Compare the steady-state portion of y(n) to z(n). How are the
amplitudes and phases of two sinusoids affected by the filter?

P4.22 Repeat Problem 4.21 for the following filter

; 1+4e 9%
Jwy
H(e™) = T4 8145072

P4.23 Solve the following difference equation for y(n) using the one-sided z-transform approach.

y(n) = 0.8ly(n—2)+z(n) —z(n—1), n >0; y(-1)=2, y(-2) =2
z(n) = (0.7)"u(n + 1)

Generate the first 20 samples of y(n) using MATLAB, and compare them with your answer.

P4.24 Solve the difference equation for y(n), n >0
y(n) — 04y(n — 1) — 0.45y(n — 2) = 0.45z(n) + 0.4z(n — 1) — z(n — 2)

driven by the input z(n) = [2 + (%)n] u(n) and subject to

Decompose the solution y(n) into (i) transient response, (ii) steady-state response, (iii)
zero-input response, and (iv) zero-state response.
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P4.25 A stable, linear and time-invariant system is given by the following system function

7422—2\/52—1—1
22 —2/2z+4

Determine the difference equation representation for this system.

Plot the poles and zeros of H(z), and indicate the ROC.

Determine the unit sample response h(n) of this system.

Is this system causal? If the answer is yes, justify it. If the answer is no, find a causal
unit sample response that satisfies the system function.

H(z)

0N =

P4.26 Determine the zero-input, zero-state, and steady-state responses of the system
y(n) =0.9801y(n —2) + z(n) + 2z(n — 1) +2z(n —2), n >0; y(-2)=1, y(-1)=0

to the input z(n) = 5(—1)"u(n).
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CHAPTER

The Discrete
Fourier Transform

In Chapters 3 and 4 we studied transform-domain representations of dis-
crete signals. The discrete-time Fourier transform provided the frequency-
domain (w) representation for absolutely summable sequences. The
z-transform provided a generalized frequency-domain (z) representation
for arbitrary sequences. These transforms have two features in common.
First, the transforms are defined for infinite-length sequences. Second,
and the most important, they are functions of continuous variables (w
or z). From the numerical computation viewpoint (or from MATLAB’s
viewpoint), these two features are troublesome because one has to evalu-
ate infinite sums at uncountably infinite frequencies. To use MATLAB, we
have to truncate sequences and then evaluate the expressions at finitely
many points. This is what we did in many examples in the two previous
chapters. The evaluations were obviously approximations to the exact
calculations. In other words, the discrete-time Fourier transform and the
z-transform are not numerically computable transforms.

Therefore we turn our attention to a numerically computable trans-
form. It is obtained by sampling the discrete-time Fourier transform in the
frequency domain (or the z-transform on the unit circle). We develop this
transform by first analyzing periodic sequences. From Fourier analysis we
know that a periodic function (or sequence) can always be represented by
a linear combination of harmonically related complex exponentials (which
is a form of sampling). This gives us the discrete Fourier series (DFS) rep-
resentation. Since the sampling is in the frequency domain, we study the
effects of sampling in the time domain and the issue of reconstruction in

141
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142 Chapter 5 B THE DISCRETE FOURIER TRANSFORM

the z-domain. We then extend the DFS to finite-duration sequences, which
leads to a new transform, called the discrete Fourier transform (DFT).
The DFT avoids the two problems mentioned and is a numerically com-
putable transform that is suitable for computer implementation. We study
its properties and its use in system analysis in detail. The numerical com-
putation of the DFT for long sequences is prohibitively time-consuming.
Therefore several algorithms have been developed to efficiently compute
the DFT. These are collectively called fast Fourier transform (or FFT)
algorithms. We will study two such algorithms in detail.

5.1 THE DISCRETE FOURIER SERIES
i

In Chapter 2 we defined the periodic sequence by Z(n), satisfying the
condition

z(n) =x(n+EkN), Vn,k (5.1)

where N is the fundamental period of the sequence. From Fourier analysis
we know that the periodic functions can be synthesized as a linear com-
bination of complex exponentials whose frequencies are multiples (or har-
monics) of the fundamental frequency (which in our case is 27 /N). From
the frequency-domain periodicity of the discrete-time Fourier transform,
we conclude that there are a finite number of harmonics; the frequencies
are {%rk, k=0,1,...,N — 1}. Therefore a periodic sequence Z(n) can
be expressed as

1N

N

—_

X (k) FF n=0,+1,..., (5.2)
k=0

Z(n) =

where {X(/ﬂ), k =0,%1,...,} are called the discrete Fourier series co-
efficients, which are given by

N-—1
X(k) =" @(n)e ¥ k=04+1,..., (5.3)
n=0

Note that X (k) is itself a (complex-valued) periodic sequence with fun-
damental period equal to N, that is,

X(k+ N) = X(k) (5.4)

The pair of equations (5.3) and (5.2), taken together, is called the discrete
- 270
Fourier series representation of periodic sequences. Using Wy = e 7~ to
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denote the complex exponential term, we express (5.3) and (5.2) as

- N-1
X (k) 2 DFS[#(n)] = Y. #(n)Wrk : Analysis or a
n=0 DFS equation
- A 5 1Nt —nk . .
Z(n) = IDFS[X (k)] = N > X(B)YWy : Synthesis or an inverse
k=0 DFS equation
(5.5)
O EXAMPLE 5.1 Find DFS representation of the periodic sequence
#(n)=1{...,0,1,2,3,0,1,2,3,0,1,2,3,.. .}
1
Solution The fundamental period of this sequence is N = 4. Hence Wy = P -
—j. Now
3
X(k) =D #m)Wi*, k=0,4+1,%2,. ..
n=0
Hence
3 3
X(0) = a#mWi™ = "i(n) =#(0) + (1) + #(2) + (3) = 6
0 0
Similarly,
3 3
X(1) =Y amWi = 3n)(—5)" = (=2 +2)
0 0
3 3
X(@) =Y amWi" = a(n)(—j)™" =2
0 0
3 3
X@) =Y _ amWi" = i(n)(—j)”" = (-2 - 2j)
0 0
0

5.1.1 MATLAB IMPLEMENTATION

A careful look at (5.5) reveals that the DFS is a numerically computable
representation. It can be implemented in many ways. To compute each
sample X(k), we can implement the summation as a for...end loop.
To compute all DFS coefficients would require another for. . .end loop.

This will result in a nested two for...end loop implementation. This is
clearly inefficient in MATLAB. An efficient implementation in MATLAB
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144 Chapter 5 B THE DISCRETE FOURIER TRANSFORM

would be to use a matrix-vector multiplication for each of the relations
n (5.5). We have used this approach earlier in implementing a numerical
approximation to the discrete-time Fourier transform. Let X and X denote
column vectors corresponding to the primary periods of sequences Z(n)
and X (k), respectively. Then (5.5) is given by

X = Wyk
1l (5.6)
where the matrix Wy is given by
n —
1 1 -1

N-1

. 1wk wiY
Wy = [WN ogk,ngN—1] = ]f . . . . (5.7)

1 W](\[Nfl) W](VNfl)z

The matrix Wy is a square matrix and is called a DFS matriz. The
following MATLAB function dfs implements this procedure.

function [Xk] = dfs(xn,N)

% Computes Discrete Fourier Series Coefficients
e
% [Xk] = dfs(zn,N)

% Xk = DFS coeff. array over 0 <= k <= N-1

% xn = One period of periodic signal over O <= n <= N-1

% N = Fundamental period of xn

%

n = [0:1:N-1]; % row vector for n

k = [0:1:N-1]; % row vecor for k

WN = exp(-j*2xpi/N); % Wn factor

nk = n’*k; creates a N by N matrix of nk values

DFS matrix
row vector for DFS coefficients

WNnk = WN .~ nk;
Xk = xn * WNnk;

SIS

The DFS in Example 5.1 can be computed using MATLAB as

>> xn = [0,1,2,3]; N = 4; Xk = dfs(xn,N)
Xk =
6.0000 -2.0000 + 2.0000i -2.0000 - 0.0000i -2.0000 - 2.0000i
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The following idfs function implements the synthesis equation.

function [xn] = idfs(Xk,N)

% Computes Inverse Discrete Fourier Series
e
% [xn] = idfs(Xk,N)

% xn = One period of periodic signal over 0 <= n <= N-1

% Xk = DFS coeff. array over 0 <= k <= N-1

% N = Fundamental period of Xk

%

n = [0:1:N-1]; % row vector for n

k = [0:1:N-1]; % row vecor for k

WN = exp(-j*2xpi/N); % Wn factor

nk = n’*k; % creates a N by N matrix of nk values
WNnk = WN .~ (-nk); % IDFS matrix

xn = (Xk * WNnk)/N; row vector for IDFS values

=

Caution: These functions are efficient approaches of implementing (5.5)
in MATLAB. They are not computationally efficient, especially for large
N. We will deal with this problem later in this chapter.

O EXAMPLE 5.2 A periodic “square wave” sequence is given by

B 1, mN <n<mN+L-1
I(n) =

;o o m=0,£1,4£2,...
0, mN+L<n<(m+1)N-1

where N is the fundamental period and L/N is the duty cycle.

a. Determine an expression for |X (k)| in terms of L and N.

b. Plot the magnitude |X (k)| for L = 5, N = 20; L = 5, N = 40; L = 5,
N =60; and L =7, N = 60.

c. Comment on the results.

Solution A plot of this sequence for L = 5 and N = 20 is shown in Figure 5.1.

Three Periods of xtilde(n)
1.5 T T T

0.

xtilde
[}
T
Il

—05 I I I I I
-20 -10 0 10 20 30

n

FIGURE 5.1 Periodic square wave sequence
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146 Chapter 5 B THE DISCRETE FOURIER TRANSFORM

a. By applying the analysis equation (5.3),

N-1 L—-1 L—-1

Xk = dm)e FE =S e F = (eﬂ%"k)"
n=0 n=0 n=0
L, k=0,£N,£2N, ...
= { 1 _ g—i2nLk/N
otherwise

1 — e—J2nk/N ’

The last step follows from the sum of the geometric terms formula (2.7) in
Chapter 2. The last expression can be simplified to

1 — ¢—927Lk/N o—dmLk/N jnLk/N _ ,—jnLk/N
1 _ e—i2nk/N — o—jxk/N gjnk/N _ g—jmk/N
_ efjw(Lfl)k/NSin(ﬂ_kL/N)
sin (rk/N)

or the magnitude of X (k) is given by

L, k=0,+N,£2N,...
|X(/€)‘ = M otherwise
sin (rk/N) |’

b. The MATLAB script for L =5 and N = 20:

> L =5; N=20; k = [-N/2:N/2]; % Sq wave parameters
>> xn = [ones(1,L), zeros(1,N-L)]; % Sq wave x(n)
>> Xk = dfs(xn,N); % DFS

>> magXk = abs([Xk(N/2+1:N) Xk(1:N/2+1)1); % DFS magnitude
>> subplot(2,2,1); stem(k,magXk); axis([-N/2,N/2,-0.5,5.5])
>> xlabel(’k’); ylabel(’Xtilde(k)’)

>> title(’DFS of SQ. wave: L=5, N=20’)

The plots for this and all other cases are shown in Figure 5.2. Note that
since X (k) is periodic, the plots are shown from —N/2 to N/2.

c. Several interesting observations can be made from plots in Figure 5.2. The
envelopes of the DFS coefficients of square waves look like “sinc” functions.
The amplitude at £ = 0 is equal to L, while the zeros of the functions are
at multiples of N/L, which is the reciprocal of the duty cycle. We will study
these functions later in this chapter. O

5.1.2 RELATION TO THE zTRANSFORM
Let z(n) be a finite-duration sequence of duration N such that

(n) = Nonzero, 0 <n < N —1 (5.8)
T = 0, Elsewhere '
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DFS of Sg. wave: L=5, N=20 DFS of Sg. wave: L=5, N=40
5 ® 5 fal0)
4 4
%3 53
2 2
X2 X2
9o aft [T i gl
LT 1.9 st [3lllllg
-10 -5 0 5 10 -20 -10 0 10 20
k k
DFS of Sg. wave: L=7, N=60
5 i
4 6 P
= = o)
=3 =3
v3 =
S g4 i
X2 =
2
1®
0 0
-20 0 20 -20 0 20
k k

FIGURE 5.2 The DFS plots of a periodic square wave for various L and N

Then we can compute its z-transform:

N-1

X(z) = Z x(n)z™" (5.9)

n=0

Now we construct a periodic sequence Z(n) by periodically repeating z(n)
with period N, that is,

Z(n), 0<n<N-1

= 5.10
#(n) 0, Elsewhere ( )
The DFS of Z(n) is given by
. N-1 . N-1 R
X(k) =Y #n)e T = 3" a(n) [eﬂw’”f] (5.11)
n=0 n=0
Comparing it with (5.9), we have
X(k) = X(Z)|Z:ej2w’*k (5.12)

which means that the DFS X (k) represents N evenly spaced samples of
the z-transform X (z) around the unit circle.
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5.1.3 RELATION TO THE DTFT
Since x(n) in (5.8) is of finite duration of length N, it is also absolutely
summable. Hence its DTFT exists and is given by

N-1 N-1
X(ev) = Z z(n)e I¥m = Z F(n)e v (5.13)
n=0 n—=0
Comparing (5.13) with (5.11), we have
X (k) = X(ej“’)]w:%,,k (5.14)
et A2 A2
wy] = N and = Nk = kwy

Then the DFS X (k) = X (e/**) = X (e/**1), which means that the DFS is
obtained by evenly sampling the DTFT at w; = %’“ intervals. From (5.12)
and (5.14) we observe that the DFS representation gives us a sampling
mechanism in the frequency domain that, in principle, is similar to sam-
pling in the time domain. The interval w; = %T is the sampling interval
in the frequency domain. It is also called the frequency resolution because

it tells us how close the frequency samples (or measurements) are.
0  EXAMPLE53 Let z(n) ={0,1,2,3}.
T

a. Compute its discrete-time Fourier transform X (e9%).
b. Sample X (e’¥) at kwi = %T"k, k = 0,1,2,3 and show that it is equal to
X (k) in Example 5.1.

Solution The sequence z(n) is not periodic but is of finite duration.

a. The discrete-time Fourier transform is given by

oo
X(ejw) _ Z x(n)e—jwn :e—jw+26—j2w+36—j3u

n=-—oo

b. Sampling at kw1 = %T’Tk, k=0,1,2, 3, we obtain

X(%) =1+4+2+3=6=X(0)
X(ej27'r/4) _ e—j27r/4 +2e—j47‘r/4 + 3€—j67r/4 =24 2] — Xv—(l)
X(ej47'r/4) — dAm/A _’_267]'877/4 + 3e—i127/4 _ 9 _ X'(?)
X(ej67r/4) _ e—j61‘r/4 + 26—j127r/4 + 3e—j187r/4 =295 = X(3)

as expected. O
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5.2 SAMPLING AND RECONSTRUCTION IN THE z-DOMAIN
i

Let z(n) be an arbitrary absolutely summable sequence, which may be of
infinite duration. Its z-transform is given by

oo

X(z)= Z x(m)z™™

m=—0oQ

and we assume that the ROC of X (z) includes the unit circle. We sample
X (2) on the unit circle at equispaced points separated in angle by wy =
27 /N and call it a DFS sequence,

X(k) & X(2)|__ 30 k=0,£1,42...
= > a(m)eIFEm = N amywim (5.15)

which is periodic with period N. Finally, we compute the IDFS of X (k),
i(n) = IDFS[X (k)]

which is also periodic with period N. Clearly, there must be a relationship
between the arbitrary z(n) and the periodic Z(n). This is an important
issue. In order to compute the inverse DTFT or the inverse z-transform
numerically, we must deal with a finite number of samples of X (z) around
the unit circle. Therefore we must know the effect of such sampling on
the time-domain sequence. This relationship is easy to obtain.

Fn) = % S X (Wit [from (5.2)

2|H
> 2
Il |
o -
—N—

i z(m }W P Jfrom (5.15)]

or

00 N—-1 0o

~ 1 —k(n—m =
Z(n) = Z x(m) N Z Wy (n=m) — Z x(m) Z 6(n—m—rN)
m=—oo 0 m=—o00 r=—00
_J1, n—-m=rN
10, elsewhere

Z Z x(m)é(n —m —1rN)

T=—00 M=—00
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or

Fn)= > a(n—rN)=--+z(n+N)+zn)+z(n—-N)+- - (516)

r=—00

which means that when we sample X (2) on the unit circle, we obtain a
periodic sequence in the time domain. This sequence is a linear combina-
tion of the original z(n) and its infinite replicas, each shifted by multiples
of £N. This is illustrated in Example 5.5. From (5.16), we observe that if
xz(n) = 0for n < 0 and n > N, then there will be no overlap or aliasing in
the time domain. Hence we should be able to recognize and recover x(n)
from Z(n), that is,

z(n) =%(n) for 0 <n < (N —1)

or
Z(n), 0<n<N-1

0, else

z(n) =z(n)Ry(n) = {

where Ry (n) is called a rectangular window of length N. Therefore we
have the following theorem.

] THEOREM 1  Frequency Sampling
If x(n) is time-limited (i.e., of finite duration) to [0, N — 1], then N
samples of X (z) on the unit circle determine X (z) for all z.

O  EXAMPLES54 Let z1(n) = {6,5,4,3,2,1}. Tts DTFT X;(e’¥) is sampled at
T

wk:¥, k=0 41,42 43 ...

to obtain a DFS sequence X3 (k). Determine the sequence 2(n), which is the
inverse DFS of X, (k).

Solution Without computing the DTFT, the DFS, or the inverse DFS, we can evaluate
Z2(n) by using the aliasing formula (5.16).

Za(n) = Z x1(n — 4r)

Thus z(4) is aliased into z(0), and z(5) is aliased into z(1). Hence

Fo(n)=1{...,8,6,4,3,8,6,4,3,8,6,4,3,...} O
T
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O EXAMPLE 55 Let x(n) = (0.7)" u(n). Sample its z-transform on the unit circle with N = 5,
10, 20, 50 and study its effect in the time domain.

Solution From Table 4.1 the z-transform of z(n) is
1 z
X = =
@) =107 =i =on
We can now use MATLAB to implement the sampling operation
X (k) = X(2)|,_jomryn, k=0,+£1,42,...

and the inverse DFS computation to determine the corresponding time-domain
sequence. The MATLAB script for N =5 is as follows.

|z| > 0.7

> N =5; k = 0:1:N-1; % sample index

>> wk = 2*pixk/N; zk = exp(j*wk); % samples of z

>> Xk = (zk)./(zk-0.7); % DFS as samples of X(z)
>> xn = real(idfs(Xk,N)); % IDFS

>> xtilde = xn’* ones(1,8); xtilde = (xtilde(:))’; % Periodic sequence
>> subplot(2,2,1); stem(0:39,xtilde);axis([0,40,-0.1,1.5])
>> xlabel(’n’); ylabel(’xtilde(n)’); title(’N=5’)

The plots in Figure 5.3 clearly demonstrate the aliasing in the time domain,
especially for N = 5 and N = 10. For large values of N the tail end of z(n)

N N L
e N

FIGURE 5.3 Plots in Example 5.5
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152 Chapter 5 B THE DISCRETE FOURIER TRANSFORM

is sufficiently small to result in any appreciable amount of aliasing in practice.
Such information is useful in effectively truncating an infinite-duration sequence
prior to taking its transform. O

5.2.1 THE TRANSFORM RECONSTRUCTION FORMULA
Let 2(n) be time-limited to [0, N — 1]. Then from Theorem 1 we should
be able to recover the z-transform X (z) using its samples X (k). This is
given by

X(z) = Zlz(n)] = Z [2(n)Rn(n)]

~ Z(IDFS{  X(k)  }Rw(n)
~——
Samples of X (z)

This approach results in the z-domain reconstruction formula.

N-1 N-1

X(z) = Z z(n)z™" = Z Z(n)z~"
0

Il
Z
—_ o |
Ry
| ——
2|~
=M
S
=
5
&
——
I
3

I Il
2= =]
Bl Z
|
S
= =
—N— ——
=M% M7
—~ g
S
el 3
N
| |
- 3
S S——
——

Il
o

=0
1 N_lj((k) 1— Wk =N }
N &~ 1—Wykzt

Since WY = 1, we have

(5.17)

5.2.2 THE DTFT INTERPOLATION FORMULA
The reconstruction formula (5.17) can be specialized for the discrete-time
Fourier transform by evaluating it on the unit circle z = e/. Then

(e _ LN e X (k)
() = N 1 — ei27k/Ng—jw
k=0
N—-1 .
- 1 — e~ JwN
=Y X(k) °

N {1 _ ej27rk/N€—jw}
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Consider
1 — e iwN 1 — e dW=23")N
R e T A P )

N
Let
D(w) 2 Me*j“’(%) : an interpolating function (5.18)
N sin(%)
Then
. R 2rk
X(e?) = X(k)® (w - T) (5.19)
k=0

This is the DTFT interpolation formula to reconstruct X (e/*) from its
samples X (k). Since ®(0) = 1, we have that X (e/2™*/N) = X (k), which
means that the interpolation is exact at sampling points. Recall the
time-domain interpolation formula (3.33) for analog signals:

oo

2o (t) = Z x(n) sinc [Fs(t — nTs)] (5.20)

n=—oo

The DTFT interpolating formula (5.19) looks similar.
However, there are some differences. First, the time-domain formula
(5.20) reconstructs an arbitrary nonperiodic analog signal, while the

frequency-domain formula (5.19) gives us a periodic waveform. Second, in
sin(Nz)
N sinzx
(sinc) function. The ®(w) function is a periodic function and hence
is known as a periodic-sinc function. It is also known as the Dirichlet

function. This is the function we observed in Example 5.2.

(5.19) we use a

sin &
T

interpolation function instead of our more familiar

5.2.3 MATLAB IMPLEMENTATION

The interpolation formula (5.19) suffers the same fate as that of (5.20)
while trying to implement it in practice. One has to generate several inter-
polating functions (5.18) and perform their linear combinations to obtain
the discrete-time Fourier transform X (e/*) from its computed samples
X (k). Furthermore, in MATLAB we have to evaluate (5.19) on a finer grid
over 0 < w < 27. This is clearly an inefficient approach. Another approach
is to use the cubic spline interpolation function as an efficient approxi-
mation to (5.19). This is what we did to implement (5.20) in Chapter 3.
However, there is an alternate and efficient approach based on the DFT,
which we will study in the next section.
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5.3 THE DISCRETE FOURIER TRANSFORM
i

The discrete Fourier series provides a mechanism for numerically comput-
ing the discrete-time Fourier transform. It also alerted us to a potential
problem of aliasing in the time domain. Mathematics dictates that the
sampling of the discrete-time Fourier transform result in a periodic se-
quence Z(n). But most of the signals in practice are not periodic. They
are likely to be of finite duration. How can we develop a numerically com-
putable Fourier representation for such signals? Theoretically, we can take
care of this problem by defining a periodic signal whose primary shape is
that of the finite-duration signal and then using the DF'S on this periodic
signal. Practically, we define a new transform called the discrete Fourier
transform (DFT), which is the primary period of the DFS. This DFT
is the ultimate numerically computable Fourier transform for arbitrary
finite-duration sequences.

First we define a finite-duration sequence xz(n) that has N samples
over 0 <n < N —1 as an N-point sequence. Let Z(n) be a periodic signal
of period N, created using the N-point sequence z(n); that is, from (5.19)

o0

Z(n) = Z x(n —rN)

r=—00

This is a somewhat cumbersome representation. Using the modulo-N
operation on the argument we can simplify it to

Z(n) = z(nmod N) (5.21)

A simple way to interpret this operation is the following: if the argument
n is between 0 and N — 1, then leave it as it is; otherwise add or sub-
tract multiples of NV from n until the result is between 0 and N — 1. Note
carefully that (5.21) is valid only if the length of x(n) is V or less. Further-
more, we use the following convenient notation to denote the modulo-N
operation.

2((n))n £ z(nmod N) (5.22)

Then the compact relationships between z(n) and Z(n) are

Z(n) = aj((n))N (Pe.riodic extensi-on) (5.23)
z(n) =x(n)Ry(n) (Window operation)

The rem(n,N) function in MATLAB determines the remainder after di-
viding n by N. This function can be used to implement our modulo-N
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operation when n > 0. When n < 0, we need to modify the result to
obtain correct values. This is shown below in the m=mod(n,N) function.

function m = mod(n,N)

% Computes m = (n mod N) index
%
% m = mod(n,N)

m = rem(n,N); m = m+N; m = rem(m,N);

In this function n can be any integer array, and the array m contains the
corresponding modulo-N values.

From the frequency sampling theorem we conclude that N equispaced
samples of the discrete-time Fourier transform X (e/*) of the N-point se-
quence z(n) can uniquely reconstruct X (e“). These N samples around
the unit circle are called the discrete Fourier transform coefficients. Let
X(k) = DFS#(n), which is a periodic (and hence of infinite duration)
sequence. Its primary interval then is the discrete Fourier transform,
which is of finite duration. These notions are made clear in the follow-
ing definitions. The Discrete Fourier Transform of an N-point sequence is

given by
X(k),0<k<N-1 _
X(R) 2 DFT [a(n)] = |~ PP OSFSN =L 200 k)
0, elsewhere
or
N—1
X(k)y=>Y z(n)W§F, 0<k<N-1 (5.24)
n=0

Note that the DFT X (k) is also an N-point sequence, that is, it is
not defined outside of 0 < k < N — 1. From (5.23) X(k) = X((k))n;
that is, outside the 0 < k < N — 1 interval only the DFS X(k) is de-
fined, which of course is the periodic extension of X (k). Finally, X (k) =

X (k)R (k) means that the DET X (k) is the primary interval of X (k).
The inverse discrete Fourier transform of an N-point DFT X (k) is

given by
2(n) £ IDFT [X (k)] = &(n)Rx(n)
or X N1
w(n) = X(E)Wxy*™, 0<n<N-1 (5.25)
k=0

Once again z(n) is not defined outside 0 < n < N — 1. The extension of
x (n) outside this range is Z(n).
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5.3.1 MATLAB IMPLEMENTATION

It is clear from the discussions at the top of this section that the DFS is
practically equivalent to the DFT when 0 < n < N — 1. Therefore the
implementation of the DFT can be done in a similar fashion. If z(n) and
X (k) are arranged as column vectors x and X, respectively, then from
(5.24) and (5.25) we have

X:WNX

1 (5.26)
x = Wi X

where Wy is the matrix defined in (5.7) and will now be called a DFT
matriz. Hence the earlier dfs and idfs MATLAB functions can be re-
named as the dft and idft functions to implement the discrete Fourier
transform computations.

function [Xk] = dft(xn,N)

% Computes Discrete Fourier Transform
== ——

% [Xk] = dft(xn,N)

% Xk = DFT coeff. array over 0 <= k <= N-1
% xn = N-point finite-duration sequence

% N = Length of DFT

YA

n = [0:1:N-1]; % row vector for n

k = [0:1:N-1]; % row vecor for k

WN = exp(-j*2*pi/N); % Wn factor

nk = n’*k; % creates a N by N matrix of nk values
WNnk = WN .~ nk; % DFT matrix

Xk = xn * WNnk; % row vector for DFT coefficients

function [xn] = idft(Xk,N)
% Computes Inverse Discrete Transform

% —- S, -

% [xn] = idft(Xk,N)

% xn = N-point sequence over 0 <= n <= N-1

% Xk = DFT coeff. array over 0 <= k <= N-1

% N = length of DFT

"

n = [0:1:N-1]; % row vector for n

k = [0:1:N-1]; % row vecor for k

WN = exp(-j*2*pi/N); % Wn factor

nk = n’*k; % creates a N by N matrix of nk values
WNnk = WN .~ (-nk); % IDFT matrix

xn = (Xk * WNnk)/N; % row vector for IDFT values
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O EXAMPLE 5.6  Let z(n) be a 4-point sequence:

1,0<n<3
z(n) = .
0, otherwise

a. Compute the discrete-time Fourier transform X (e’“) and plot its magni-
tude and phase.
b. Compute the 4-point DFT of z(n).

Solution a. The discrete-time Fourier transform is given by
3
X(e]w) — Zw(n)efjwn -1 + efjo.z + 67_72&) + efg&u
0

o 1-— 67'7.4“) o SIH(QW) e,j3w/2
T 1l—ei¥ " sin(w/2)
Hence
j in(2w)
(7| = sin(
| (e )‘ sin(w/2)
and
_3_w7 when 75,111(2“)) >0
» 2 sin(w/2)
(X (7)) = 5 (2
_39 4 when SR22) g
2 sin(w/2)
The plots are shown in Figure 5.4.
b. Let us denote the 4-point DFT by X4 (k). Then
3
Xa(k) =Y a(m)Wi* k=0,1,2,3 Wy=e "' = —j
n=0

These calculations are similar to those in Example 5.1. We can also use
MATLAB to compute this DFT.

>> x = [1,1,1,1]; N = 4; X = dft(x,N);
>> magX = abs(X), phaX = angle(X)*180/pi

magX =
4.0000 0.0000 0.0000 0.0000
phaX =
0 -134.9810 -90.0000 -44.9979
Hence

Xa(k) ={4,0,0,0}
T

Note that when the magnitude sample is zero, the corresponding angle is not
zero. This is due to a particular algorithm used by MATLAB to compute the
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Magnitude of the DTFT
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FIGURE 5.4 The DTFT plots in Example 5.6

angle part. Generally these angles should be ignored. The plot of DFT values
is shown in Figure 5.5. The plot of X (e?“) is also shown as a dashed line for
comparison. From the plot in Figure 5.5 we observe that X4 correctly gives
4 samples of X (e’*), but it has only one nonzero sample. Is this surprising? By
looking at the 4-point x(n), which contains all 1’s, one must conclude that its
periodic extension is

Z(n) =1, Vn

which is a constant (or a DC) signal. This is what is predicted by the DFT
X4(k), which has a nonzero sample at k = 0 (or w = 0) and has no values at
other frequencies. O

O EXAMPLE 5.7 How can we obtain other samples of the DTFT X (e/“)?

Solution It is clear that we should sample at dense (or finer) frequencies; that is, we
should increase N. Suppose we take twice the number of points, or N = 8
instead of 4. This we can achieve by treating xz(n) as an 8-point sequence by
appending 4 zeros.

x(n) = {1a 17 17 17070707 O}
T
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Magnitude of the DFT: N=4
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FIGURE 5.5 The DFT plots of Example 5.6

This is a very important operation called a zero-padding operation. This oper-
ation is necessary in practice to obtain a dense spectrum of signals as we shall
see. Let Xg (k) be an 8-point DFT, then

7
Xs (k) = Zm(n)Wgnk; k=0,1,...,7; Wg =e i™/4
n=0

In this case the frequency resolution is w; = 27/8 = 7 /4.

MATLAB script:

>> x = [1,1,1,1, zeros(1,4)]; N = 8; X = dft(x,N);
>> magX = abs(X), phaX = angle(X)*180/pi
magX =
4.0000 2.6131 0.0000 1.0824 0.0000 1.0824 0.0000 2.6131
phaX =
0 -67.5000 -134.9810 -22.5000 -90.0000 22.5000 -44.9979 67.5000

Hence

Xs (k) = {4, 2.6131e 797" 0, 1.0824¢ 225" 0, 1.0824¢7%*5°
T

0, 2.6131¢7°7°}
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Magnitude of the DFT: N=8
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FIGURE 5.6 The DFT plots of Example 5.7: N =8

which is shown in Figure 5.6. Continuing further, if we treat z(n) as a 16-point
sequence by padding 12 zeros, such that

z(n) ={1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0}
1

then the frequency resolution is wy = 27/16 = /8 and Wi = e 7™/, Therefore
we get a more dense spectrum with spectral samples separated by m/8. The
sketch of X6 (k) is shown in Figure 5.7.

It should be clear then that if we obtain many more spectral samples by
choosing a large N value then the resulting DFT samples will be very close to
each other and we will obtain plot values similar to those in Figure 5.4. However,
the displayed stem-plots will be dense. In this situation a better approach to
display samples is to either show them using dots or join the sample values using
the plot command (that is, using the FOH studied in Chapter 3). Figure 5.8
shows the magnitude and phase of the 128-point DFT z128(k) obtained by
padding 120 zeros. The DFT magnitude plot overlaps the DTFT magnitude plot
shown as dotted-line while the phase plot shows discrepancy at discontinuities
due to finite N value, which should be expected. O

Comments: Based on the last two examples there are several comments
that we can make.
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Magnitude of the DFT: N=16
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FIGURE 5.7 The DFT plots of Example 5.7: N = 16

1. Zero-padding is an operation in which more zeros are appended to the
original sequence. The resulting longer DFT provides closely spaced
samples of the discrete-time Fourier transform of the original sequence.
In MATLAB zero-padding is implemented using the zeros function.

2. In Example 5.6 all we needed to accurately plot the discrete-time
Fourier transform X (e/*) of z(n) was X4 (k), the 4-point DFT. This
is because x(n) had only 4 nonzero samples, so we could have used the
interpolation formula (5.19) on X4 (k) to obtain X (e?“). However, in
practice, it is easier to obtain Xs (k) and Xi6 (k), and so on, to fill in
the values of X (e/“) rather than using the interpolation formula. This
approach can be made even more efficient using fast Fourier transform
algorithms to compute the DFT.

3. The zero-padding gives us a high-density spectrum and provides a better
displayed version for plotting. But it does not give us a high-resolution
spectrum because no new information is added to the signal; only ad-
ditional zeros are added in the data.

4. To get a high-resolution spectrum, one has to obtain more data from
the experiment or observations (see Example 5.8 below). There are
also other advanced methods that use additional side information or
nonlinear techniques.
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Magnitude of the DFT: N=128
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FIGURE 5.8 The DFT plots of Example 5.7 for N = 128 are shown as line
plots

O EXAMPLE 5.8 To illustrate the difference between the high-density spectrum and the
high-resolution spectrum, consider the sequence

z(n) = cos (0.487n) + cos (0.527n)
We want to determine its spectrum based on the finite number of samples.

a. Determine and plot the discrete-time Fourier transform of z(n), 0 < n < 10.
b. Determine and plot the discrete-time Fourier transform of xz(n),
0 <n < 100.

Solution We could determine analytically the discrete-time Fourier transform in each
case, but MATLAB is a good vehicle to study these problems.

a. We can first determine the 10-point DFT of z(n) to obtain an estimate of its
discrete-time Fourier transform.
MATLAB Script:

>>n = [0:1:99]; x = cos(0.48*pi*n)+cos(0.52%pi*n) ;
>>nl = [0:1:9] ;y1 = x(1:1:10);
>> subplot(2,1,1) ;stem(nl,yl); title(’signal x(n), 0 <= n <= 9’);xlabel(’n’)
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signal x(n), 0 <=n<=9
T T T
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FIGURE 5.9 Signal and its spectrum in Example 5.8a: N = 10

>> Y1 = dft(y1,10); magVl = abs(Y1(1:1:6));

>> k1 = 0:1:5 ;wl = 2%pi/10%kl;

>> subplot(2,1,2);stem(wl/pi,mag¥1l);title(’Samples of DTFT Magnitude’);
>> xlabel(’frequency in pi units’)

The plots in Figure 5.9 show there aren’t enough samples to draw any conclu-
sions. Therefore we will pad 90 zeros to obtain a dense spectrum. As explained
in Example 5.7, this spectrum is plotted using the plot command.

MATLAB Script:

>> n2 = [0:1:99]; y2 = [x(1:1:10) zeros(1,90)];

>> subplot(2,1,1) ;stem(n2,y2) ;title(’signal x(n), O <= n <= 9 + 90 zeros’);
>> xlabel(’n’)

>> Y2 =dft(y2,100); magY2 = abs(Y2(1:1:51));

>> k2 = 0:1:50; w2 = 2*pi/100%k2;

>> subplot(2,1,2); plot(w3/pi,magY3); title(’DTFT Magnitude’) ;

>> xlabel(’frequency in pi units’)

Now the plot in Figure 5.10 shows that the sequence has a dominant frequency
at w = 0.57. This fact is not supported by the original sequence, which has two
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signal x(n), 0 <=n <=9 + 90 zeros
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FIGURE 5.10 Signal and its spectrum in Ezample 5.8a: N = 100

frequencies. The zero-padding provided a smoother version of the spectrum in
Figure 5.9.

b. To get better spectral information, we will take the first 100 samples of z(n)
and determine its discrete-time Fourier transform.

MATLAB Script:

>> subplot(2,1,1); stem(n,x);

>> title(’signal x(n), 0 <= n <= 99’); xlabel(’n’)

>> X = dft(x,100); magX = abs(X(1:1:51));

>> k = 0:1:50; w = 2*pi/100%k;

>> subplot(2,1,2); plot(w/pi,magX); title(’DTFT Magnitude’);
>> xlabel(’frequency in pi units’)

Now the discrete-time Fourier transform plot in Figure 5.11 clearly shows two
frequencies, which are very close to each other. This is the high-resolution spec-
trum of z(n). Note that padding more zeros to the 100-point sequence will result
in a smoother rendition of the spectrum in Figure 5.11 but will not reveal any
new information. Readers are encouraged to verify this. O
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signal x(n), 0 <=n <= 99
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FIGURE 5.11 Signal and its spectrum in Example 5.8b: N = 100

5.4 PROPERTIES OF THE DISCRETE FOURIER TRANSFORM
i

The DFT properties are derived from those of the DFS because mathe-
matically DFS is the valid representation. We discuss several useful prop-
erties, which are given without proof. These properties also apply to the
DFS with necessary changes. Let X (k) be an N-point DFT of the se-
quence z(n). Unless otherwise stated, the N-point DFTs will be used in
these properties.

1. Linearity: The DFT is a linear transform
DFT [az1(n) + bxa(n)] = a DFT [z1(n)] + b DFT [z2(n)] (5.27)

Note: If z1(n) and zo(n) have different durations—that is, they are
Ni-point and Ns-point sequences, respectively—then choose N3 =
max (N, Na) and proceed by taking Ns-point DFTs.

2. Circular folding: If an N-point sequence is folded, then the result
x(—n) would not be an N-point sequence, and it would not be possible
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to compute its DFT. Therefore we use the modulo-N operation on the
argument (—n) and define folding by

7 (—n))y = {“0)’ "o

2(N—-n),1<n<N-1

This is called a circular folding. To visualize it, imagine that the se-
quence z(n) is wrapped around a circle in the counterclockwise direc-
tion so that indices n = 0 and n = N overlap. Then z((—n))n can be
viewed as a clockwise wrapping of xz(n) around the circle; hence the
name circular folding. In MATLAB the circular folding can be achieved
by x=x(mod(-n,N)+1). Note that the arguments in MATLAB begin
with 1. The DFT of a circular folding is given by

X(0), k=0
X(N—k),1<k<N-1

(5.28)

DFT [z ((—n))y] = X ((-k) = (5.29)

O EXAMPLE 59 Let z(n) =10(0.8)", 0<n <10.

a. Determine and plot  ((—n)),,-
b. Verify the circular folding property.

Solution a. MATLAB script:

>>n = 0:100; x = 10%(0.8) .” n; y = x(mod(-n,11)+1);

>> subplot(2,1,1); stem(n,x); title(’Original sequence’)

>> xlabel(’n’); ylabel(’x(n)’);

>> subplot(2,1,2); stem(n,y); title(’Circularly folded sequence’)
>> xlabel(’n’); ylabel(’x(-n mod 10)’);

The plots in Figure 5.12 show the effect of circular folding.
b. MATLAB script:

>> X = dft(x,11); Y = dft(y,ll);

>> subplot(2,2,1); stem(n,real(X));

>> title(’Real{DFT[x(n)]1}’); xlabel(’k’);

>> subplot(2,2,2); stem(n,imag(X));

>> title(’Imag{DFT[x(n)]1}’); xlabel(’k’);

>> subplot(2,2,3); stem(n,real(Y));

>> title(’Real{DFT[x((-n))11]1}’); xlabel(’k’);
>> subplot(2,2,4); stem(n,imag(Y));

>> title(’Imag{DFT[x((-n))11]1}’); xlabel(’k’);

The plots in Figure 5.13 verify the property. O
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FIGURE 5.12  Clircular folding in Exzample 5.9a
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FIGURE 5.13  Clircular folding property in Example 5.9b
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3. Conjugation: Similar to the above property we have to introduce the
circular folding in the frequency domain.

DFT 2" (n)] = X* ((~k))y (5.30)

4. Symmetry properties for real sequences: Let z(n) be a real-
valued N-point sequence. Then z(n) = z*(n). Using (5.30)

X(k) = X" (~h))y (531)
This symmetry is called a circular conjugate symmetry. It further im-
plies that

Re [X (k)] = Re[X ((—Fk))y] = Circular-even sequence
Im [X (k)] = —Im [X ((N — k)) 5] = Circular-odd sequence
I X (k)| =X ((—F)) 5] = Circular-even sequence
(X(k)=—/X((—Fk) N = Circular-odd sequence
(5.32)
Comments:

1. Observe the magnitudes and angles of the various DFTs in Examples
5.6 and 5.7. They do satisfy the above circular symmetries. These sym-
metries are different than the usual even and odd symmetries. To visu-
alize this, imagine that the DFT samples are arranged around a circle
so that the indices £ = 0 and k = N overlap; then the samples will
be symmetric with respect to k = 0, which justifies the name circular
Symimetry.

2. The corresponding symmetry for the DFS coefficients is called the pe-
riodic conjugate symmetry.

3. Since these DFTs have symmetry, one needs to compute X (k) only for
N
k::O,l,...,?; N even

k:071,...7¥; N odd

or for

This results in about 50% savings in computation as well as in storage.

4. From (5.30)
X(0) = X*((=0))n = X7(0)
which means that the DFT coefficient at k¥ = 0 must be a real number.
But £ = 0 means that the frequency wy = kw; = 0, which is the DC
frequency. Hence the DC coefficient for a real-valued z(n) must be a
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real number. In addition, if N is even, then N/2 is also an integer.
Then from (5.32)

X (N/2) = X* ((=N/2))y = X" (N/2)

which means that even the & = N/2 component is also real-valued.
This component is called the Nyquist component since k = N/2 means
that the frequency wy/o = (N/2)(2n/N) = =, which is the digital
Nyquist frequency.

The real-valued signals can also be decomposed into their even and odd
components, z.(n) and z, (n), respectively, as discussed in Chapter 2.
However, these components are not N-point sequences and therefore we
cannot take their N-point DFTs. Hence we define a new set of components
using the circular folding discussed above. These are called circular-even
and circular-odd components defined by

2 1ign) 4z ((—n _ @0, noY
Zee(n) = 2[ (n)+z(( ))N]_ {%[x(n)+$(N—n)]7 1<n<N-1
A 0, n=~0
Toc (n) = 3 [2(n) —@ ((-n))y] = {%[x(n>—x<zv_n>J, 1<n<N-1
(5.33)
Then
DFT [zec (n)] = Re [X (k)] = Re[X ((—k)) ] (5.34)

DFT [zoc (n)]

Im [X (k)] = Tm [X ((=F)) x]

Implication: 1If x(n) is real and circular-even, then its DFT is also real
and circular-even. Hence only the first 0 < n < N/2 coefficients are
necessary for complete representation.

Using (5.33), it is easy to develop a function to decompose an N-point
sequence into its circular-even and circular-odd components. The follow-
ing circevod function uses the mod function given earlier to implement
the modulo-N operation.

function [xec, xoc] = circevod(x)
% signal decomposition into circular-even and circular-odd parts

% [xec, xoc] = circevod(x)

if any(imag(x) ~= 0)
error(’x is not a real sequence’)
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170 Chapter 5 W THE DISCRETE FOURIER TRANSFORM

end
N = length(x); n = 0: (N-1);
xec = 0.5%(x + x(mod(-n,N)+1)); xoc = 0.5%(x - x(mod(-n,N)+1));

0 EXAMPLE5.10 Let z(n) =10(0.8)", 0 <n <10 as in Example 5.9.

a. Decompose and plot the zcc(n) and zoc(n) components of z(n).
b. Verify the property in (5.34).

Solution a. MATLARB script:

>>n = 0:10; x = 10%(0.8) .~ n;

>> [xec,xoc] = circevod(x);

>> subplot(2,1,1); stem(n,xec); title(’Circular-even component’)
>> xlabel(’n’); ylabel(’xec(n)’); axis([-0.5,10.5,-1,11])

>> subplot(2,1,2); stem(n,xoc); title(’Circular-odd component’)
>> xlabel(’n’); ylabel(’xoc(n)’); axis([-0.5,10.5,-4,4])

The plots in Figure 5.14 show the circularly symmetric components of z(n).

Circular-even component

10 ¢ i
8r i
€ 6r i
g
X 4r B
2 I T T T T T T |
or 4
1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
n
Circular-odd component
4 T T T
2r i
g [ 1
~ L Q B
g or e ] L
x
2+ 4
_4 1 1 1 1 1 1 1 1 1 1 1

FIGURE 5.14 Circular-even and circular-odd components of the sequence in
Ezample 5.10a
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FIGURE 5.15 Plots of DFT symmetry properties in Example 5.10b

b. MATLAB script:

>> X = dft(x,11); Xec = dft(xec,11); Xoc = dft(xoc,11);

>> subplot(2,2,1); stem(n,real(X)); axis([-0.5,10.5,-5,50])

>> title(’Real{DFT[x(n)]}’); xlabel(’k’);

>> subplot(2,2,2); stem(n,imag(X)); axis([-0.5,10.5,-20,20])
>> title(’Imag{DFT[x(n)]1}’); xlabel(’k’);

>> subplot(2,2,3); stem(n,real(Xec)); axis([-0.5,10.5,-5,50])
>> title (’DFT[xec(n)]’); xlabel(’k’);

>> subplot(2,2,4); stem(n,imag(Xoc)); axis([-0.5,10.5,-20,20])
>> title(°DFT[xoc(n)]’); xlabel(’k’);

From the plots in Figure 5.15 we observe that the DFT of z..(n) is the same as
the real part of X (k) and that the DFT of z,c(n) is the same as the imaginary
part of X (k). O

A similar property for complex-valued sequences is explored in Prob-

lem P5.18.

5. Circular shift of a sequence: If an N-point sequence is shifted in
either direction, then the result is no longer between 0 < n < N — 1.
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Therefore we first convert x(n) into its periodic extension Z(n), and
then shift it by m samples to obtain

Tn—m)=z((n—m))y (5.35)

This is called a periodic shift of Z(n). The periodic shift is then con-
verted into an N-point sequence. The resulting sequence

Z(n—m)Ry(n) =z ((n—m))y Rn(n) (5.36)

is called the circular shift of x(n). Once again to visualize this, imagine
that the sequence z(n) is wrapped around a circle. Now rotate the circle
by k samples and unwrap the sequence from 0 <n < N — 1. Its DFT
is given by

DFT [z ((n —m)) y Ry (n)] = WE™ X (k) (5.37)

0 EXAMPLES5.11 Let z(n) = 10(0.8)", 0 <n <10 be an 11-point sequence.

a. Sketch z((n + 4))11R11(n), that is, a circular shift by 4 samples toward the
left.

b. Sketch z((n — 3))15R15(n), that is, a circular shift by 3 samples toward the
right, where z(n) is assumed to be a 15-point sequence.

Solution We will use a step-by-step graphical approach to illustrate the circular shifting
operation. This approach shows the periodic extension Z(n) = z((n))n of z(n),
followed by a linear shift in Z(n) to obtain Z(n —m) = z((n —m))n~, and finally
truncating Z(n — m) to obtain the circular shift.

a. Figure 5.16 shows four sequences. The top-left shows z(n), the bottom-left
shows Z(n), the top-right shows Z(n+4), and finally the bottom-right shows
z((n+4))11R11(n). Note carefully that as samples move out of the [0, N — 1]
window in one direction, they reappear from the opposite direction. This is
the meaning of the circular shift, and it is different from the linear shift.

b. In this case the sequence x(n) is treated as a 15-point sequence by padding
4 zeros. Now the circular shift will be different than when N = 11. This
is shown in Figure 5.17. In fact the circular shift = ((n — 3)),, looks like a
linear shift z(n — 3). O

To implement a circular shift, we do not have to go through the
periodic shift as shown in Example 5.11. It can be implemented directly
in two ways. In the first approach, the modulo-N operation can be used
on the argument (n —m) in the time domain. This is shown below in the
cirshftt function.
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FIGURE 5.16 Graphical interpretation of circular shift, N = 11
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FIGURE 5.17 Graphical interpretation of circular shift, N = 15
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function y = cirshftt(x,m,N)
% Circular shift of m samples wrt size N in sequence x: (time domain)
YA
% [yl = cirshftt(x,m,N)
% y = output sequence containing the circular shift
% x = input sequence of length <= N
% m = sample shift
% N = size of circular buffer
% Method: y(n) = x((n-m) mod N)
% Check for length of x
if length(x) > N
error (’N must be >= the length of x’)

=28 K<

end
x = [x zeros(1,N-length(x))];
n = [0:1:N-1]; n = mod(n-m,N); y = x(n+1);

In the second approach, the property (5.37) can be used in the frequency
domain. This is explored in Problem P5.20.

0 EXAMPLE5.12 Given an 11-point sequence z(n) = 10(0.8)", 0 < n < 10, determine and plot
z ((n—6)),5-

Solution MATLARB script:

>>n = 0:10; x 10%(0.8) .~ n; y = cirshftt(x,6,15);
>>n = 0:14; x = [x, zeros(1,4)];

>> subplot(2,1,1); stem(n,x); title(’Original sequence’)
>> xlabel(’n’); ylabel(’x(n)’);

>> subplot(2,1,2); stem(n,y);

>> title(’Circularly shifted sequence, N=15’)

>> xlabel(’n’); ylabel(’x((n-6) mod 15)°’);

The results are shown in Figure 5.18. O

6. Circular shift in the frequency domain: This property is a dual
of the preceding property given by

DFT [Wy"z(n)] = X ((k — £)) y R (k) (5.38)

7. Circular convolution: A linear convolution between two N-point
sequences will result in a longer sequence. Once again we have to
restrict our interval to 0 < n < N — 1. Therefore instead of linear
shift, we should consider the circular shift. A convolution operation
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FIGURE 5.18 Clircularly shifted sequence in Example 5.12

that contains a circular shift is called the circular convolution and is
given by

-1

z1(n) Q) w2(n) = 3 w(m)az (n—m))y, 0<n<N-1 (539)

=0

Note that the circular convolution is also an N-point sequence. It has
a structure similar to that of a linear convolution. The differences
are in the summation limits and in the N-point circular shift. Hence
it depends on N and is also called an N-point circular convolution.
Therefore the use of the notation @ is appropriate. The DFT prop-
erty for the circular convolution is

DFT [xl(n) ™) a;g(n)} = X, (k) - Xa(k) (5.40)
An alternate interpretation of this property is that when we multi-

ply two N-point DFTs in the frequency domain, we get the circular
convolution (and not the usual linear convolution) in the time domain.

[0 EXAMPLE5.13 Let z1(n) = {1,2,2} and z2(n) = {1,2,3,4}. Compute the 4-point circular

convolution z1(n) z2(n).
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Solution Note that z1(n) is a 3-point sequence, hence we will have to pad one zero to
make it a 4-point sequence before we perform the circular convolution. We will
compute this convolution in the time domain as well as in the frequency domain.
In the time domain we will use the mechanism of circular convolution, while in
the frequency domain we will use the DFTs.

e Time-domain approach: The 4-point circular convolution is given by

z1(n) (@) w2(n) = > @1 (m) 22 (0 — m)),

Thus we have to create a circularly folded and shifted sequence z2((n—m))n
for each value of n, multiply it sample by sample with 1 (m), add the samples
to obtain the circular convolution value for that n, and then repeat the
procedure for 0 < n < 3. Consider

z1(m) ={1, 2, 2, 0} and z2(m) ={1, 2, 3, 4}

forn=20

za(m) w2 (0=m))s = > H1, 22,04 {1, 4, 3, 2}

m=0 m=0

3
= {1,860 =15
m=0

> wmm)-ma (1-m)); = > {1, 2,2, 0}-{2, 1, 4, 3}]

3

= {2,280} =12

m=0

D wm) wz(2=m)); = Y ({1, 2,2 043, 2, 1, 4]
m=0

m=0 =

3
= 2{3, 4,2,0=9

m=0

> wm(m)-m (3-m)); = > {1, 2,2, 0}-{4, 3, 2, 1}]

m=0 =

3
= {4,6,4,0}=14
m=0
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Hence

z1(n) (@) z2(n) = {15, 12, 9, 14}

e Frequency-domain approach: In this approach we first compute 4-point DFT's
of z1(n) and z2(n), multiply them sample by sample, and then take the
inverse DF'T of the result to obtain the circular convolution.

DFT of z1(n)
z1(n) =41,2,2,0} = X1(k) = {5, -1 —j2, 1, -1+ j2}
DFT of z2(n)
z2(n) =41,2,3,4} = Xa(k) = {10, -2+ 52, —2, —2 — 52}
Now
Xi1(k) - X2(k) = {50, 6 + 52, —2, 6 — j2}
Finally after IDFT,

z1(n) (0) z2(n) = {15, 12, 9, 14}

which is the same as before. O

Similar to the circular shift implementation, we can implement the
circular convolution in a number of different ways. The simplest approach
would be to implement (5.39) literally by using the cirshftt function
and requiring two nested for. . .end loops. Obviously, this is not efficient.
Another approach is to generate a sequence x ((n —m)), for each n in
[0, N — 1] as rows of a matrix and then implement (5.39) as a matrix-
vector multiplication similar to our dft function. This would require
one for. . .end loop. The following circonvt function incorporates these
steps.

function y = circonvt(x1,x2,N)
% N-point circular convolution between x1 and x2: (time-domain)
/R— -
% [yl = circonvt(x1,x2,N)
% y = output sequence containing the circular convolution
% x1 = input sequence of length N1 <= N
% x2 = input sequence of length N2 <= N
% N = size of circular buffer
% Method: y(n) = sum (x1(m)*x2((n-m) mod N))
% Check for length of x1
if length(xl) > N
error (’N must be >= the length of x1’)

end
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% Check for length of x2
if length(x2) > N
error (’N must be >= the length of x2’)
end
x1=[x1 zeros(1,N-length(x1))];
x2=[x2 zeros(1,N-length(x2))];
m = [0:1:N-1]; x2 = x2(mod(-m,N)+1); H = zeros(N,N);
for n = 1:1:N
H(n,:) = cirshftt(x2,n-1,N);
end
y = xl*conj(H’);

Problems P5.24 and P5.25 explore an approach to eliminate the for. ..
end loop in the circonvt function. The third approach would be to im-
plement the frequency-domain operation (5.40) using the dft function.
This is explored in Problem P5.26.

0 EXAMPLE5.14 Let us use MATLAB to perform the circular convolution in Example 5.13.

Solution The sequences are z1(n) = {1,2,2} and z2(n) = {1, 2, 3,4}.
MATLARB script:

>> x1 = [1,2,2]; x2 = [1,2,3,4]; y = circonvt(xl, x2, 4)

y =
15 12 9 14
Hence
z1(n) (0) z2(n) = {15, 12, 9, 14}
as before. O

0 EXAMPLE 5.15 In this example we will study the effect of IV on the circular convolution. Obvi-
ously, N > 4; otherwise there will be a time-domain aliasing for z2(n). We will
use the same two sequences from Example 5.13.

a. Compute z1(n) @ z2(n).
b. Compute z1(n) @ z2(n).

c. Comment on the results.

Solution The sequences are z1(n) = {1,2,2} and z2(n) = {1,2, 3,4}. Even though the
sequences are the same as in Example 5.14, we should expect different results
for different values of N. This is not the case with the linear convolution, which
is unique, given two sequences.
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a. MATLAB Script for 5-point circular convolution:

>> x1 = [1,2,2]; x2 = [1,2,3,4]; y = circonvt(xl, x2, 5)

9 4 9 14 14

z1(n) (8) w2(n) = {9, 4, 9, 14, 14}

b. MATLAB Script for 6-point circular convolution:

>> x1 = [1,2,2]; x2 = [1,2,3,4]; y = circonvt(xl, x2, 6)

1 4 9 14 14 8

z1(n) @ za(n) ={1, 4, 9, 14, 14, 8}

c. A careful observation of 4-, 5-, and 6-point circular convolutions from
this and the previous example indicates some unique features. Clearly, an
N-point circular convolution is an N-point sequence. However, some sam-
ples in these convolutions have the same values, while other values can be
obtained as a sum of samples in other convolutions. For example, the first
sample in the 5-point convolution is a sum of the first and the last samples
of the 6-point convolution. The linear convolution between z1(n) and z2(n)
is given by

zi(n) *z2(n) = {1, 4, 9, 14, 14, 8}

which is equivalent to the 6-point circular convolution. These and other
issues are explored in the next section. O

8. Multiplication: This is the dual of the circular convolution property.
It is given by

DFT [21(n) - 72(n)] = %Xl(k) M) Xa(k) (5.41)

in which the circular convolution is performed in the frequency domain.
The MATLAB functions developed for circular convolution can also be
used here since X; (k) and X5 (k) are also N-point sequences.

9. Parseval’s relation: This relation computes the energy in the fre-
quency domain.

N—-1 1 N—-1
B =) |z(n)]” = & > X(k)° (5.42)
n=0 k=0
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2
The quantity % is called the energy spectrum of finite-duration se-

quences. Similarly, for periodic sequences, the quantity |¥ |2 is called
the power spectrum.

5.5 LINEAR CONVOLUTION USING THE DFT
i

One of the most important operations in linear systems is the linear convo-
lution. In fact, FIR filters are generally implemented in practice using this
linear convolution. On the other hand, the DFT is a practical approach
for implementing linear system operations in the frequency domain. As we
shall see later, it is also an efficient operation in terms of computations.
However, there is one problem. The DFT operations result in a circular
convolution (something that we do not desire), not in a linear convolution
that we want. Now we shall see how to use the DFT to perform a linear
convolution (or equivalently, how to make a circular convolution identical
to the linear convolution). We alluded to this problem in Example 5.15.

Let z1(n) be an Nj-point sequence and let xzo(n) be an Na-point
sequence. Define the linear convolution of z1(n) and z3(n) by x3(n),
that is,

z3(n) = z1(n) * z2(n)

[e%s) N;i—1
= > m(k)za(n—k)= Y zi(k)za(n—k)  (5.43)
k=—oc0 0

Then z5(n) is a (N7 + N2 — 1)-point sequence. If we choose N =
max (N1, N2) and compute an N-point circular convolution z;(n) @
x9(n), then we get an N-point sequence, which obviously is different
from x3(n). This observation also gives us a clue. Why not choose
N = N; + Ny — 1 and perform an (N; + Ny — 1)-point circular con-
volution? Then at least both of these convolutions will have an equal
number of samples.

Therefore let N = Ny + Ny — 1 and let us treat z1(n) and z2(n) as
N-point sequences. Define the N-point circular convolution by z4(n).

xz4(n) = x1(n) @ xa(n) (5.44)

N-1
[Z 1 (m)aa((n — m))N} Rn(n)

m=0

m=0 r=—00

N-1 )
[Z x1(m) Z l’g(ﬂ—Tﬂ—TN)] Ry (n)
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(oo} lel

= Z le(m)l‘z(n—m—TN) Ry(n)

r=—oo0 m=0

L z3(n—rN)

oo

= Z z3(n —rN)| Ry(n) using (5.43)

Lr=—00

This analysis shows that, in general, the circular convolution is an aliased
version of the linear convolution. We observed this fact in Example 5.15.
Now since z3(n) is an N = (N7 + Na — 1)-point sequence, we have

xz4(n) =23(n); 0<n<(N-1)
which means that there is no aliasing in the time domain.

Conclusion: If we make both x1(n) and x2(n) N = Ny + Ny — 1 point
sequences by padding an appropriate number of zeros, then the circular
convolution is identical to the linear convolution.

[0 EXAMPLES5.16 Let z1(n) and z2(n) be the following two 4-point sequences.
z1(n) = {17 2,2, 1}7 z2(n) = {17 -1, -1, 1}

a. Determine their linear convolution z3(n).
b. Compute the circular convolution z4(n) so that it is equal to zs(n).

Solution We will use MATLAB to do this problem.
a. MATLAB Script:

>> x1 = [1,2,2,1]; x2 = [1,-1,-1,1]; =x3 = conv(x1,x2)
x3 = 1 1 -1 -2 -1 1 1

Hence the linear convolution z3(n) is a 7-point sequence given by
-’133(”) = {17 17 _17 _2, _17 17 1}

b.We will have to use N > 7. Choosing N = 7, we have

>> x4 = circonvt(x1,x2,7)
x4 = 1 1 -1 -2 =il 1 1

Hence

za={1,1,-1,-2,—-1,1,1} = z3(n) O
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5.5.1 ERROR ANALYSIS

To use the DF'T for linear convolution, we must choose N properly. How-
ever, in practice it may not be possible to do so, especially when N is very
large and there is a limit on memory. Then an error will be introduced
when N is chosen less than the required value to perform the circular

convolution. We want to compute this error, which is useful in practice.
Obviously, N > max(Ny, N3). Therefore let

max(Nl,Ng) <N (N1 + Ny — 1)
Then, from our previous analysis (5.44)

xz4(n) = [ Z acg(n—rN)] Ry (n)

r=—00

Let an error e(n) be given by

1>

e(n)

x24(n) — x3(n)

ZCL‘3(’H —rN)| Rn(n)

r#0

Since N > max (N7, N3), only two terms corresponding to » = 1 remain
in the above summation. Hence

e(n) =[z3(n — N)+z3(n+ N)| Rn(n)

Generally, z1(n) and z3(n) are causal sequences. Then x3(n) is also causal,
which means that

z3(n—N)=0; 0<n<N-1

Therefore
e(n) =a3(n+N), 0<n<N-1 (5.45)

This is a simple yet important relation. It implies that when
max (N1, N3) < N < (N7 + Ny — 1) the error value at n is the same as the
linear convolution value computed N samples away. Now the linear con-
volution will be zero after (N7 4+ Ny —1) samples. This means that the first
few samples of the circular convolution are in error, while the remaining
ones are the correct linear convolution values.

0 EXAMPLE5.17 Consider the sequences z1(n) and z2(n) from the previous example. Evaluate
circular convolutions for N = 6, 5, and 4. Verify the error relations in each case.
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Solution Clearly, the linear convolution z3(n) is still the same.
zs(n) = {1,1,-1,-2,—1,1,1}

When N = 6, we obtain a 6-point sequence.

za(n) = z1(n) (6) 22(n) = {2,1,-1,-2,—1,1}
Therefore
e(n) = {2,1,—1,-2,—-1,1} — {1,1,-1,-2,-1,1}, 0<n<5
= {1,0,0,0,0,0}
= x3(n +6)
as expected. When N = 5, we obtain a 5-point sequence,
za(n) = z1(n) (5) wa(n) = {2,2,-1,-2, -1}
and
e(n) = {2,2,—-1,-2,—1} — {1,1,-1,-2, -1}, 0<n<4
= {1,1,0,0,0}
= z3(n +5)
Finally, when N = 4, we obtain a 4-point sequence,
za(n) = z1(n) () 22(n) = {0,2,0, -2}
and
e(n) = {0,2,0,-2} — {1,1,-1,-2}, 0<n<3
= {-1,1,1,0}
= z3(n+4)

The last case of N = 4 also provides the following useful observation.

Observation: When N = max(N1, N2) is chosen for circular convolution, then
the first (M — 1) samples are in error (i.e., different from the linear convolution),
where M = min(N1, N2). This result is useful in implementing long convolutions
in the form of block processing. [l

5.5.2 BLOCK CONVOLUTIONS

When we want to filter an input sequence that is being received con-
tinuously, such as a speech signal from a microphone, then for practical
purposes we can think of this sequence as an infinite-length sequence. If
we want to implement this filtering operation as an FIR filter in which
the linear convolution is computed using the DFT, then we experience
some practical problems. We will have to compute a large DFT, which is
generally impractical. Furthermore, output samples are not available until
all input samples are processed. This introduces an unacceptably large
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amount of delay. Therefore we have to segment the infinite-length input
sequence into smaller sections (or blocks), process each section using the
DFT, and finally assemble the output sequence from the outputs of each
section. This procedure is called a block convolution (or block processing)
operation.

Let us assume that the sequence z(n) is sectioned into N-point se-
quences and that the impulse response of the filter is an M-point se-
quence, where M < N. Then from the observation in Example 5.17 we
note that the N-point circular convolution between the input block and
the impulse response will yield a block output sequence in which the first
(M — 1) samples are not the correct output values. If we simply partition
x(n) into nonoverlapping sections, then the resulting output sequence will
have intervals of incorrect samples. To correct this problem, we can parti-
tion z(n) into sections, each overlapping with the previous one by exactly
(M — 1) samples, save the last (N — M + 1) output samples, and finally
concatenate these outputs into a sequence. To correct for the first (M — 1)
samples in the first output block, we set the first (M — 1) samples in the
first input block to zero. This procedure is called an overlap-save method
of block convolutions. Clearly, when N > M, this method is more effi-
cient. We illustrate it using a simple example.

0 EXAMPLE5.18 Let z(n) = (n+1), 0<n<9andh(n)=1{1,0,—1}. Implement the overlap-
T
save method using N = 6 to compute y(n) = z(n) * h(n).

Solution Since M = 3, we will have to overlap each section with the previous one by two
samples. Now z(n) is a 10-point sequence, and we will need (M — 1) = 2 zeros
in the beginning. Since N = 6, we will need 3 sections. Let the sections be

z1(n) = {0,0,1,2,3,4}
z2(n) = {3,4,5,6,7,8}
z3(n) = {7,8,9,10,0,0}
Note that we have to pad z3(n) by two zeros since z(n) runs out of values at

n = 9. Now we will compute the 6-point circular convolution of each section
with h(n).

g1 =a1(n) (6) h(n) = {~3,-4,1,2,2,2}
yo = 22(n) (6) h(n) = {—4,-4,2,2,2,2}

ys = z3(n) (6) h(n) = {7,8,2,2,-9,-10}
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Noting that the first two samples in each section are to be discarded, we assemble
the output y(n) as

y(n) = {17 2> 27 27 21 27 2a 27 2> 27 _97 _10}
T

The linear convolution is given by

z(n) * h(n) = {1,2,2,2,2,2,2,2,2,2, -9, —10}
T

which agrees with the overlap-save method. O

5.5.3 MATLAB IMPLEMENTATION

Using this example as a guide, we can develop a MATLAB function to
implement the overlap-save method for a very long input sequence z(n).
The key step in this function is to obtain a proper indexing for the
segmentation. Given z(n) for n > 0, we have to set the first (M — 1)
samples to zero to begin the block processing. Let this augmented se-
quence be

#(n) £{0,0,...,0,2(n)}, n>0
——
(M —1) zeros
and let L = N — M + 1, then the kth block zx(n), 0<n <N —1,is
given by
zg(n)=a(m); kL<m<kL+N-1,k>0,0<n<N-1

The total number of blocks is given by

Ny +M—2
K = {%JH

where N, is the length of x(n) and |-] is the truncation operation. Now
each block can be circularly convolved with h(n) using the circonvt
function developed earlier to obtain

ye(n) = zx(n) Q) h(n)

Finally, discarding the first (M — 1) samples from each yx(n) and con-
catenating the remaining samples, we obtain the linear convolution y(n).
This procedure is incorporated in the following ovrlpsav function.
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%%\leftskip12pt

function [y] = ovrlpsav(x,h,N)

% Overlap-Save method of block convolution
A
% [yl = ovrlpsav(x,h,N)

% y = output sequence

% x = input sequence

% h = impulse response

% N = block length

A

Lenx = length(x); M = length(h); M1 = M-1; L = N-M1;
h = [h zeros(1,N-M)];
%
x = [zeros(1,M1), x, zeros(1,N-1)]; % preappend (M-1) zeros
K = floor((Lenx+M1-1)/(L)); % # of blocks
Y = zeros(K+1,N);

% convolution with succesive blocks
for k=0:K

xk = x(k*xL+1:k*L+N);

Y(k+1,:) = circonvt(xk,h,N);

end
Y = Y(:,M:N)’; % discard the first (M-1) samples
y = (YD) % assemble output

Note: The ovrlpsav function as developed here is not the most efficient
approach. We will come back to this issue when we discuss the fast Fourier
transform.

0 EXAMPLE 519 To verify the operation of the ovrlpsav function, let us consider the sequences
given in Example 5.18.

Solution MATLARB script:

> n =0:9; x =n+l; h = [1,0,-1]; N = 6; y = ovrlpsav(x,h,N)

y =
1 2 2 2 2 2 2 2 2 2 -9 -10

This is the correct linear convolution as expected. O

There is an alternate method called an overlap-add method of block
convolutions. In this method the input sequence z(n) is partitioned into
nonoverlapping blocks and convolved with the impulse response. The re-
sulting output blocks are overlapped with the subsequent sections and
added to form the overall output. This is explored in Problem P5.32.
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5.6 THE FAST FOURIER TRANSFORM
i

The DFT (5.24) introduced earlier is the only transform that is discrete in
both the time and the frequency domains, and is defined for finite-duration
sequences. Although it is a computable transform, the straightforward
implementation of (5.24) is very inefficient, especially when the sequence
length N is large. In 1965 Cooley and Tukey [1] showed a procedure to
substantially reduce the amount of computations involved in the DFT.
This led to the explosion of applications of the DFT, including in the
digital signal processing area. Furthermore, it also led to the development
of other efficient algorithms. All these efficient algorithms are collectively
known as fast Fourier transform (FFT) algorithms.

Consider an N-point sequence z(n). Its N-point DFT is given by
(5.24) and reproduced here

N-1
X(k)=> a(mWxF, 0<k<N-1 (5.46)

n=0

where Wy = e 927/N  To obtain one sample of X (k), we need N complex
multiplications and (N —1) complex additions. Hence to obtain a complete
set of DFT coefficients, we need N2 complex multiplications and N (N —1)
~ N? complex additions. Also one has to store N2 complex coefficients
{W[{,k} (or generate internally at an extra cost). Clearly, the number of
DFT computations for an N-point sequence depends quadratically on N,
which will be denoted by the notation

Cn = 0(N2)

For large N, o (N 2) is unacceptable in practice. Generally, the pro-
cessing time for one addition is much less than that for one multiplication.
Hence from now on we will concentrate on the number of complex multi-
plications, which itself requires 4 real multiplications and 2 real additions.

Goal of an Efficient Computation In an efliciently designed algo-
rithm the number of computations should be constant per data sample,
and therefore the total number of computations should be linear with
respect to N.

The quadratic dependence on N can be reduced by realizing that most
of the computations (which are done again and again) can be eliminated
using the periodicity property

W]l\g/‘n _ Jl\c/v(n-&-N) _ W](\/{H—N)n
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[0 EXAMPLE 5.20

Solution
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and the symmetry property

kn+N/2 kn
WhREN/2 _ ik

of the factor {Wx*}.

One algorithm that considers only the periodicity of W&F is the
Goertzel algorithm. This algorithm still requires Cy = o(N?) multi-
plications, but it has certain advantages. This algorithm is described in
Chapter 12. We first begin with an example to illustrate the advantages of
the symmetry and periodicity properties in reducing the number of com-
putations. We then describe and analyze two specific FFT algorithms that
require Cy = o(NNlog N) operations. They are the decimation-in-time
(DIT-FFT) and decimation-in-frequency (DIF-FFT) algorithms.

Let us discuss the computations of a 4-point DFT and develop an efficient
algorithm for its computation.

3

X(k) =Y amWi*, 0<k<3 Wi=e 77/ =—j

n=0

These computations can be done in the matrix form

X(0) w9 WP Wy w1 r=(0)
X(y| |wi wi wi Wi |a(1)
X(2) WP Wi wi wel =2
X (3) wP wi wp wil Lz(3)

which requires 16 complex multiplications.

Efficient Approach  Using periodicity,

WP =Wi=1 3 Wi=Wwj=-j
WP=WP=—1;Wi=;

and substituting in the above matrix form, we get

X(0) 1 1 1 17 r=(0)
X 1= -1 g |z
X@2)| |1-1 1-1| |z(?2)
X(3) 1§ -1 —j1 Lz@3)
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Using symmetry, we obtain

X(0) = 2(0) +2(1) +z(2) +2(3) = [z(0) +(2)] +[z(1) +z(3)]

X(1) =2(0) — ja(1) —2(2) +jz(3) = [2(0) —z(2)] —j[z(1) — z(3)]

X(3) =2(0) +jz(1) — 2(2) — jz(3) = [z(0) —x(2)] +jlz(1) —z(3)]
Hence an efficient algorithm is
Step 1 Step 2
g1 = x(0) + z(2) X(0)= g1+ g2
g2 = z(1) + z(3) X(1) = h1 — jh2 (5.47)
hy = z(0) — =(2) X2)= g -9

which requires only 2 complex multiplications, which is a considerably smaller
number, even for this simple example. A signal flowgraph structure for this
algorithm is given in Figure 5.19.

An Interpretation This efficient algorithm (5.47) can be interpreted differ-
ently. First, a 4-point sequence z(n) is divided into two 2-point sequences, which
are arranged into column vectors as shown here.

Hw(o)} {w(l)” _ [ar(o) x(l)}
z(2)] " [=(3) z(2) =(3)

x(0) o—> > > > >—0 X(0)
! \
x(2) o—> > > >0 X(1)
-1 hy ><
x(1) o—> > > > >0 X(2)
] A
x(3) o0—> > > > >0 X(3)
-1 h2 j

FIGURE 5.19 Signal flowgraph in Example 5.20
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Second, a smaller 2-point DFT of each column is taken.

1 1 |z(0) =(1)
1 -1| |=(2) z(3)

z
.1
8
—~~
(=]
~
8
—~~
—_
~—
| S
Il

g1 g2
| he

Then each element of the resultant matrix is multiplied by {W1?}, where p is
the row index and ¢ is the column index; that is, the following dot-product is

performed:
1—j hi ha h1 —jhe
Finally, two more smaller 2-point DFTs are taken of row vectors.
1 1
[91 92] Wo — {91 92} _ {91 +92 91— 92 ]
. 2 = . = . .
hi —jh2 hi —jh2 1 -1 h1 — jha hi+ jhe

X(0) X(2)
{)((1) )<(3)]

Although this interpretation seems to have more multiplications than the effi-
cient algorithm, it does suggest a systematic approach of computing a larger
DFT based on smaller DFTs. O

5.6.1 DIVIDE-AND-COMBINE APPROACH
To reduce the DFT computation’s quadratic dependence on N, one must
choose a composite number N = LM since

L? 4+ M? < N?  for large N

Now divide the sequence into M smaller sequences of length L, compute
M smaller L-point DFTs, and then combine these into a larger DFT
using L smaller M-point DFTs. This is the essence of the divide-and-
combine approach. Let N = LM, then the indices n and k in (5.46) can
be written as

n=~0+Lm, 0<{<L-1,0<m<M-1
(5.48)
k=q+Mp, 0<p<L-1,0<¢g<M-1

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage L earning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Fast Fourier Transform 191

and write sequences z(n) and X (k) as arrays x(¢, m) and X (p, q), respec-
tively. Then (5.46) can be written as

L—1M-1

X(p,q) = (0, mywy Tt M)
=0 m=0
L—-1

M-—1
— {Wji,q [Z z(¢, m)WJ\L,mq] } W

m=0

L-1 M-1
= Wi [Z (f, m)WJ’C}q] WP (5.49)
£=0 m=0
M-point DFT
L-point DFT

Hence (5.49) can be implemented as a three-step procedure:

1. First, we compute the M-point DFT array
M-1
F(l,)A > a(t,m)Wi% 0<qg<M-—1 (5.50)
m=0

for each of the rows £ =0,...,L — 1.
2. Second, we modify F(¢,q) to obtain another array.

0<¢<L-1
Gll,q) =WYF(,q), — ~ 5.51
(Lo =Wyrtao. 2 200 (5:51)
The factor Wf;;l is called a twiddle factor.
3. Finally, we compute the L-point DFTs
L—1
X(pq) =Y Gl.9gW,” 0<p<L-1 (5.52)
=0

for each of the columns ¢ =0,..., M — 1.

The total number of complex multiplications for this approach can now
be given by
Cn =LM?+ N+ ML? <o (N?) (5.53)

We illustrate this approach in the following example.
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[0 EXAMPLE 5.21

Solution
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Develop the divide-and-combine FFT algorithm for N = 15.

Let L = 3 and M = 5. Then, from (5.48), we have

n=0+3M, 0<(<2 0<m<4

k=q+5p, 0<p<2, 0<qg<4 (5.54)
Hence (5.49) becomes
2 4
X(pg) =) {ng [Z (L, m)Wgﬂ } WiP (5.55)
£=0 m=0

To implement (5.55), we arrange the given sequence xz(n) in the form of
an array {x(¢,m)} using a column-wise ordering as

z(0) x(3) x(6) x=(9) x(12)
z(1) z(4) =(7) «(10) xz(13) (5.56)
x(2) xz(5) =(8) xz(11) xz(14)

The first step is to compute 5-point DFTs F (¢, q) for each of the three
rows and arrange them back in the same array formation

F(0,0) F(0,1) F(0,2) F(0,3) F(0,4)
F(1,0) F(1,1) F(1,2) F(1,3) F(1,4)
F(2,0) F(2,1) F(2,2) F(2,3) F(2,4)

(5.57)

which requires a total of 3 x 52 = 75 complex operations. The second step
is to modify F(¢,q) to obtain the array G(¥,q) using the twiddle factors
Wi
G(0,0) G(0,1) G(0,2) G(0,3) G(0,4)
G(1,0) G(1,1) G(1,2) G(1,3) G(1,4)
G(2,0) G(2,1) G(2,2) G(2,3) G(2,4)

which requires 15 complex operations. The last step is to perform 3-point
DFTs X (p,q) for each of the five columns to obtain

(5.58)

X(0,0) X(0,1) X(0,2) X(0,3) X(0,4)
X(1,0) X(1,1) X(1,2) X(1,3) X(1,4)
X(2,0) X(2,1) X(2,2) X(2,3) X(2,4)

(5.59)

using a total of 5 x 32 = 45 complex operations. According to (5.54) the
array in (5.59) is a rearrangement of X (k) as

9) (5.60)
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Finally, after “unwinding” this array in the row-wise fashion, we obtain
the required 15-point DF'T X (k). The total number of complex operations
required for this divide-and-combine approach is 135, whereas the direct
approach for the 15-point DFT requires 225 complex operations. Thus
the divide-and-combine approach is clearly efficient. O

The divide-and-combine procedure can be further repeated if M or L
are composite numbers. Clearly, the most efficient algorithm is obtained
when N is a highly composite number, that is, N = R”. Such algorithms
are called radiz-R FFT algorithms. When N = R{*R5? ..., then such de-
compositions are called mized-radiz FFT algorithms. The one most pop-
ular and easily programmable algorithm is the radix-2 FFT algorithm.

5.6.2 RADIX-2 FFT ALGORITHM
Let N = 2”; then we choose L = 2 and M = N/2 and divide z(n) into
two N/2-point sequences according to (5.48) as

g1(n)

z(2n) N .
g2(n) =z(2n +1) 2

0<n<

The sequence g;(n) contains even-ordered samples of z(n), while ga(n)
contains odd-ordered samples of x(n). Let G (k) and Ga(k) be N/2-point
DFTs of g;(n) and g2(n), respectively. Then (5.49) reduces to

X (k) =Gi(k) + WKGo(k), 0<E<N -1 (5.61)

This is called a merging formula, which combines two N/2-point DFTs
into one N-point DFT. The total number of complex multiplications re-
duces to
N2
Cn = 7+N:o(N2/2)

This procedure can be repeated again and again. At each stage the
sequences are decimated and the smaller DFTs combined. This decima-
tion ends after v stages when we have N one-point sequences, which are
also one-point DFTs. The resulting procedure is called the decimation-in-
time FFT (DIT-FFT) algorithm, for which the total number of complex
multiplications is

Cn = Nv = Nlogy N

Clearly, if N is large, then C is approximately linear in N, which was
the goal of our efficient algorithm. Using additional symmetries, C can
be reduced to % logy N. The signal flowgraph for this algorithm is shown
in Figure 5.20 for N = 8.
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FIGURE 5.20 Decimation-in-time FFT structure for N = 8

In an alternate approach we choose M = 2, L. = N/2 and follow
the steps in (5.49). Note that the initial DFTs are 2-point DFTs, which
contain no complex multiplications. From (5.50)

F(0,m) = z(0,m) + (1, m)W
=z(n)+z(n+ N/2), 0<n<N/2
F(1,m) = z(0,m) + (1, m)Wy
=z(n)—z(n+N/2), 0<n<N/2
and from (5.51)
G(0,m) = F(0,m)W
=z(n)+xz(n+N/2), 0<n<N/2
G(1,m) =F(1,m)WJZ
= [o(n) — (0 + N/2)]WR, 0<n<N/2

(5.62)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage L earning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Fast Fourier Transform 195

Let G(0,m) = di(n) and G(1,m) = dz(n) for 0 < n < N/2 —1 (since
they can be considered as time-domain sequences); then from (5.52) we

have
X(0,9) = X(29) = Di(q)

(5.63)
X(1,q9) = X(2¢ + 1) = Da(q)

This implies that the DFT values X (k) are computed in a decimated
fashion. Therefore this approach is called a decimation-in-frequency FFT
(DIF-FFT) algorithm. Its signal flowgraph is a transposed structure of
the DIT-FFT structure, and its computational complexity is also equal
to % log, N.

5.6.3 MATLAB IMPLEMENTATION
MATLAB provides a function called £ft to compute the DFT of a vec-
tor x. It is invoked by X = fft(x,N), which computes the N-point DFT.
If the length of x is less than N, then x is padded with zeros. If the argu-
ment N is omitted, then the length of the DFT is the length of x. If x is a
matrix, then £fft(x,N) computes the N-point DFT of each column of x.
This £fft function is written in machine language and not using
MATLAB commands (i.e., it is not available as a .m file). Therefore it
executes very fast. It is written as a mixed-radix algorithm. If N is a
power of two, then a high-speed radix-2 FFT algorithm is employed. If
N is not a power of two, then N is decomposed into prime factors and
a slower mixed-radix FFT algorithm is used. Finally, if N is a prime
number, then the £ft function is reduced to the raw DFT algorithm.
The inverse DFT is computed using the ifft function, which has the
same characteristics as fft.

0 EXAMPLE 522 In this example we will study the execution time of the fft function for 1 <
N < 2048. This will reveal the divide-and-combine strategy for various values
of N. One note of caution. The results obtained in this example are valid only
for MATLAB Versions 5 and earlier. Beginning in Version 6, MATLAB is using
a new numerical computing core called LAPACK. It is optimized for memory
references and cache usage and not for individual floating-point operations.
Therefore, results for Version 6 and later are difficult to interpret. Also the
execution times given here are for a specific computer and may vary on different
computers.

Solution To determine the execution time, MATLAB provides two functions. The clock
function provides the instantaneous clock reading, while the etime (t1,t2) func-
tion computes the elapsed time between two time marks t1 and t2. To determine
the execution time, we will generate random vectors from length 1 through 2048,
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compute their FFTs, and save the computation time in an array. Finally, we
will plot this execution time versus V.

MATLAB script:

>> Nmax = 2048; fft_time=zeros(1l,Nmax);
>> for n=1:1:Nmax

>> x=rand(1,n);
>> t=clock;fft(x) ;fft_time(n)=etime(clock,t);
>> end

>> n=[1:1:Nmax] ; plot(n,fft_time,’.’)
>> xlabel(’N’);ylabel(’Time in Sec.’) title(’FFT execution times’)

The plot of the execution times is shown in Figure 5.21. This plot is very
informative. The points in the plot do not show one clear function but appear
to group themselves into various trends. The uppermost group depicts a o(N?)
dependence on N, which means that these values must be prime numbers be-
tween 1 and 2048 for which the FFT algorithm defaults to the DFT algorithm.
Similarly, there are groups corresponding to the o (N2/2), 0 (N2/3), o (]\72/4)7
and so on, dependencies for which the number N has fewer decompositions.
The last group shows the (almost linear) o (N log N) dependence, which is for

FFT execution times
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FIGURE 5.21 FF'T execution times for 1 <= N <= 2048
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N = 2" /0 < v < 11. For these values of N, the radix-2 FFT algorithm is used.
For all other values, a mixed-radix FFT algorithm is employed. This shows that
the divide-and-combine strategy is very effective when N is highly composite.
For example, the execution time is 0.16 sec for N = 2048, 2.48 sec for N = 2047,
and 46.96 sec for N = 2039. O

The MATLAB functions developed previously in this chapter should
now be modified by substituting the fft function in place of the dft
function. From the preceding example care must be taken to use a highly
composite N. A good practice is to choose N = 2" unless a specific
situation demands otherwise.

5.6.4 FAST CONVOLUTIONS

The conv function in MATLAB is implemented using the filter function
(which is written in C) and is very efficient for smaller values of N (< 50).
For larger values of N it is possible to speed up the convolution using the
FFT algorithm. This approach uses the circular convolution to implement
the linear convolution, and the FFT to implement the circular convolu-
tion. The resulting algorithm is called a fast convolution algorithm. In
addition, if we choose N = 2" and implement the radix-2 FFT, then the
algorithm is called a high-speed convolution. Let x1 (n) be a Ny-point se-
quence and x5 (n) be a Na-point sequence; then for high-speed convolution
N is chosen to be

N = 2[log2(N1+N2—1)] (564)

where [z] is the smallest integer greater than z (also called a ceiling
function). The linear convolution z1 (n) * 23 (n) can now be implemented
by two N-point FFTs, one N-point IFFT, and one N-point dot-product.

x1 (n) x 29 (n) =IFFT [FFT [z1 (n)] - FFT [z2 (n)]] (5.65)

For large values of N, (5.65) is faster than the time-domain convolution,
as we see in the following example.

[0 EXAMPLE5.23 To demonstrate the effectiveness of the high-speed convolution, let us compare
the execution times of two approaches. Let z1 (n) be an L-point uniformly
distributed random number between [0, 1], and let 22 (n) be an L-point Gaussian
random sequence with mean 0 and variance 1. We will determine the average
execution times for 1 < L < 150, in which the average is computed over the
100 realizations of random sequences. (Please see the cautionary note given in
Example 5.22.)
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Solution MATLAB script:

conv_time = zeros(1,150); fft_time = zeros(1,150);
%
for L = 1:150
tc = 0; tf=0;
N = 2+#L-1; nu = ceil(logl0(NI)/log10(2)); N = 2°nu;
for I=1:100
h = randn(1,L); x = rand(1,L);

t0 = clock; yl1 = conv(h,x); tl=etime(clock,t0); tc = tc+tl;
t0 = clock; y2 = ifft(£fft(h,N).*fft(x,N)); t2=etime(clock,t0);
tf = tf+t2;

end

conv_time(L)=tc/100; fft_time(L)=tf/100;

%
n = 1:150; subplot(1,1,1);
plot(n(25:150),conv_time(25:150) ,n(25:150) ,fft_time(25:150))

Figure 5.22 shows the linear convolution and the high-speed convolution times
for 25 < L < 150. It should be noted that these times are affected by the

Comparison of convolution times
0.35 T T

convolution

0.25-

0.2

time in sec.

0.1+

high—speed convolution

0.05-

0 1 1
0 50 100 150
sequence length N

FIGURE 5.22 Comparison of linear and high-speed convolution times

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage L earning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Fast Fourier Transform 199

computing platform used to execute the MATLAB script. The plot in Figure 5.22
was obtained on a 33 MHz 486 computer. It shows that for low values of L
the linear convolution is faster. The crossover point appears to be L = 50,
beyond which the linear convolution time increases exponentially, while the
high-speed convolution time increases fairly linearly. Note that since N = 2%,
the high-speed convolution time is constant over a range on L. O

5.6.5 HIGH-SPEED BLOCK CONVOLUTIONS

Earlier we discussed a block convolution algorithm called the overlap-and-
save method (and its companion the overlap-and-add method), which is
used to convolve a very large sequence with a relatively smaller sequence.
The MATLAB function ovrlpsav developed in that section uses the DFT
to implement the linear convolution. We can now replace the DF'T by the
radix-2 FF'T algorithm to obtain a high-speed overlap-and-save algorithm.
To further reduce the computations, the FFT of the shorter (fixed) se-
quence can be computed only once. The following hsolpsav function
shows this algorithm.

function [y] = hsolpsav(x,h,N)

% High-speed Overlap-Save method of block convolutions using FFT
W === -
% [yl = hsolpsav(x,h,N)

output sequence

input sequence

impulse response

= block length (must be a power of two)

=
=2 b X<
]

N = 27 (ceil(logl0(N)/log10(2));
Lenx = length(x); M = length(h);
ML = M-1; L = N-M1; h = fft(h,N);

x = [zeros(1,M1), x, zeros(1,N-1)];

floor ((Lenx+M1-1)/(L)); % # of blocks
zeros (K+1,N) ;

for k=0:K

xk = fft(x(k*L+1:k*L+N));

Y(k+1,:) = real(ifft(xk.*h));

end

Y =YCG,M:N); y = (Y(:))?;

< =
nn

A similar modification can be done to the overlap-and-add algorithm.
MATLAB also provides the function fftfilt to implement the overlap-
and-add algorithm.
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5.7 PROBLEMS

P5.1 Compute the DFS coefficients of the following periodic sequences using the DFS definition,
and then verify your answers using MATLAB.
1. #1(n)={4,1,-1,1}, N =4

Z2(n) ={2,0,0,0,-1,0,0,0}, N =38

Z3(n) ={1,0,-1,-1,0}, N =5

Za(n) ={0,0,24,0,25,0}, N =6

5. Zs(n) ={3,2,1}, N =3

- w N

P5.2 Determine the periodic sequences given the following periodic DFS coefficients. First use
the IDF'S definition and then verify your answers using MATLAB.
1. Xi(k) = {4,3j,-3j}, N =3

2 (k) =14,24,35,45}, N =4

3 (k) ={1,2+43j,4,2—-3j}, N=4

4. X4(k) ={0,0,2,0,0}, N =5

5 ( ):{37070707_3707070}7]\[:8

P5.3 Let Z1(n) be periodic with fundamental period N = 40 where one period is given by

51 (n) = 5sin(0.17mn), 0 <n <19
i) = 0, 20 < n < 39

and let Z2(n) be periodic with fundamental period N = 80, where one period is given by

5 (n) = 5sin(0.17n), 0<n <19
Ta(n) = 0, 20 < n <79

These two periodic sequences differ in their periodicity but otherwise have the same
nonzero samples.

1. Compute the DFS X, (k) of Z;(n), and plot samples (using the stem function) of its
magnitude and angle versus k.

2. Compute the DFS X3 (k) of #2(n), and plot samples of its magnitude and angle versus k.

3. What is the difference between the two preceding DFS plots?

P5.4 Consider the periodic sequence Z1(n) given in Problem P5.3. Let Z2(n) be periodic with
fundamental period N = 40, where one period is given by

Fa(n) = Z1(n), 0<n<19
2T —E1(n—20), 20 <n <39

1. Determine analytically the DF'S X (k) in terms of X, (k).
2. Compute the DFS X»(k) of #2(n) and plot samples of its magnitude and angle versus k.
3. Verify your answer in part 1 using the plots of X (k) and X2 (k)?

P5.5 Consider the periodic sequence Z1(n) given in Problem P5.3. Let Z3(n) be periodic with
period 80, obtained by concatenating two periods of Z1(n), i.e.,

#3(n) = [Z1(n), Z1(n)|pERIODIC
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Clearly, Z3(n) is different from Z2(n) of Problem P5.3 even though both of them are
periodic with period 80.

1. Compute the DFS X3(k) of Z3(n), and plot samples of its magnitude and angle versus k.
2. What effect does the periodicity doubling have on the DFS?
3. Generalize this result to M-fold periodicity. In particular, show that if

M times PERIODIC

then
X (Mk) = MXy(k), k=0,1,...,N -1
Xwm (k) =0, k#0,M,..., MN

P5.6 Let X(e’) be the DTFT of a finite-length sequence

n+1, 0<n<49;
z(n) = < 100 —n, 50 < n < 99;
0, otherwise.

1. Let

10-point ) ) ) )
yi(n) = IDFS [X(e7), X(e7*7/10), X (/1) ..., X (e77/10)]

Determine y1 (n) using the frequency sampling theorem. Verify your answer using
MATLAB.
2. Let

200-point ) . ) y
y2(n) — IDFS I:X(ejo),X(€]2W/200),X(€J47r/200), o ’X(e]5987r/200):|

Determine y2(n) using the frequency sampling theorem. Verify your answer using
MATLAB.
3. Comment on your results in parts (a) and (b).

P5.7 Let Z(n) be a periodic sequence with period N and let

j(n) 2 #(—n) = #(N — n)

that is, §(n) is a periodically folded version of #(n). Let X (k) and Y (k) be the DFS

sequences.
1. Show that
Y (k) = X(—k) = X(N — k)
that is, Y (k) is also a periodically folded version of X (k).
2. Let Z(n) = {2,4,6,1,3,5}pgRrioDIC With N = 6.
T

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage L earning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



202 Chapter 5 W THE DISCRETE FOURIER TRANSFORM

(a) Sketch g(n) for 0 <n < 5.
(b) Compute X (k) for 0 < k < 5.
(¢) Compute Y (k) for 0 < k < 5.
(d) Verify the relation in part 1.

P5.8 Consider the following finite-length sequence.

sinc?{(n — 50)/2}, 0 < n < 100;
w(n) = { 0, else.

1. Determine the DFT X (k) of z(n). Plot (using the stem function) its magnitude and
phase.

2. Plot the magnitude and phase of the DTFT X (e/“) of x(n) using MATLAB.

3. Verify that the above DFT is the sampled version of X (e?“). It might be helpful to
combine the above two plots in one graph using the hold function.

4. Ts it possible to reconstruct the DTFT X (e*) from the DFT X (k)? If possible, give the
necessary interpolation formula for reconstruction. If not possible, state why this
reconstruction cannot be done.

P5.9 Let a finite-length sequence be given by

£(n) = 2e 097 _5 < < 5
o 0, otherwise.

Plot the DTFT X (e/“) of the above sequence using DFT as a computation tool. Choose the
length N of the DFT so that this plot appears to be a smooth graph.

P5.10 Plot the DTFT magnitude and angle of each of the following sequences using the DFT as a
computation tool. Make an educated guess about the length N so that your plots are
meaningful.

1. z(n) = (0.6)™ [u(n 4 10) — u(n — 11)].

2. z(n) = n(0.9)" [u(n) — u(n — 21)].

3. z(n) = [cos(0.5mn) + jsin(0.57n)][u(n) — u(n — 51)].
4. z(n) =

{1,2,3,4,3,2,1}.
T

5. z(n) ={-1,-2,-3,0,3,2,1}.
T

P5.11 Let H(e’) be the frequency response of a real, causal discrete-time LSI system.

1. If
Re {H (ej“’)} = Z (0.9)* cos (kw)
k=0

determine the impulse response h(n) analytically. Verify your answer using DFT as a
computation tool. Choose the length N appropriately.
2. If

Im{H (ejw)} :ZQZsin(&u), and / H(e)dw = 0
=0 -

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage L earning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems 203

determine the impulse response h(n) analytically. Verify your answer using DFT as a
computation tool. Again choose the length N appropriately.

P5.12 Let X (k) denote the N-point DFT of an N-point sequence z(n). The DFT X (k) itself is an
N-point sequence.

1. If the DFT of X (k) is computed to obtain another N-point sequence z1(n), show that
z1(n) = Nz((—n))n, 0<n<N-1

2. Using this property, design a MATLAB function to implement an N-point circular
folding operation z2(n) = x1((—n))n. The format should be

x2 = circfold(x1,N)

% Circular folding using DFT

% x2 = circfold(x1,N)

% x2 = circularly folded output sequence
% x1 input sequence of length <= N

% N = circular buffer length

3. Determine the circular folding of the following sequence.
z1(n) = {1,3,5,7,9,—-7,—5,—3,—1}
P5.13 Let X (k) be an N-point DFT of an N-point sequence z(n). Let N be an even integer.

1. If z(n) = z(n + N/2) for all n, then show that X (k) = 0 for k odd (i.e., nonzero for k
even). Verify this result for z(n) = {1,2,-3,4,5,1,2,—-3,4,5}.

2. If z(n) = —z(n + N/2) for all n, then show that X (k) = 0 for k even (i.e., nonzero for
k odd). Verify this result for z(n) = {1,2,-3,4,5,—-1,—-2,3, -4, —5}.

P5.14 Let X (k) be an N-point DFT of an N-point sequence z(n). Let N = 4v where v is an
integer.

1. If z(n) = z(n 4 v) for all n, then show that X (k) is nonzero for k =4¢ for 0 < ¢ <v — 1.
Verify this result for z(n) = {1,2,3,1,2,3,1,2,3,1,2,3}.
2. If z(n) = —z(n + v) for all n, then show that X (k) is nonzero for k = 4¢ + 2 for
0 < ¢ < v —1. Verify this result for z(n) = {1,2,3,-1,-2,-3,1,2,3, -1, -2, —3}.
P5.15 Let X (k) be an N-point DFT of an N-point sequence z(n). Let N = 2uv where p and v are
integers.

1. If z(n) = z(n + v) for all n, then show that X (k) is nonzero for k = 2(pf) for 0 < £ <
v — 1. Verify this result for z(n) = {1,-2,3,1,-2,3,1,-2,3,1,-2,3,1,—2,3,1, -2, 3}.
2. If (n) = —z(n + v) for all n, then show that X (k) is nonzero for k = 2(uf + 1) for
0 < ¢ < v —1. Verify this result for z(n) = {1,-2,3,-1,2,-3,1,—-2,3,-1,2,-3,1, -2,
3,-1,2, -3}

P5.16 Let X (k) and Y (k) be 10-point DFTSs of two 10-point sequences z(n) and y(n),
respectively. If

X (k) = exp(j0.27k), 0< k<9

determine Y (k) in each of the following cases without computing the DFT.
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204 Chapter 5 W THE DISCRETE FOURIER TRANSFORM

1. y(n) = z((n— 5))0
2. y(n) =z((n+4))10
3. y(n) = 2((3 — n))o
4. y(n) = :r(n)ejg’m/‘r’
5. y(n) = (n) A9 2((—n))o

Verify your answers using MATLAB.
P5.17 The first six values of the 10-point DFT of a real-valued sequence x(n) are given by

{10, -2+ 53,3 + j4,2 — j3,4 + j5,12}
Determine the DFT of each of the following sequences using DFT properties.

z1(n) = z((2 — n))1wo

z2(n) = x((n +5))10

w3(n) = 2(n)z((—n))10
za(n) = 2(n) A0 z((—n))10

5. x5(n) = z(n)e M4™/°

Ll S

P5.18 Complex-valued N-point sequence z(n) can be decomposed into N-point circular-conjugate-
symmetric and circular-conjugate-antisymmetric sequences using the following relations
a1

xccs(n) = 5 [.T(Tl,) + I*((—n))N}

1 *
S le(n) — " ((=n))w]

If Xr(k) and X1(k) are the real and imaginary parts of the N-point DFT of z(n), then

>

xCCa(n)

DFT [zces(n)] = Xr(k) and DFT [zeca(n)] = jX1(k)

1. Prove these relations property analytically.

2. Modify the circevod function developed in the chapter so that it can be used for
complex-valued sequences.

3. Let X (k) = [3cos(0.2wk) + j4sin(0.17k)][u(k) — u(k — 20)] be a 20-point DFT. Verify
this symmetry property using your circevod function.

P5.19 If X (k) is the N-point DFT of an N-point complex-valued sequence
2(n) = wr(n) + jzi(n)
where zr(n) and z1(n) are the real and imaginary parts of x(n), then
DFT [zr(n)] = Xces(k) and DFT [jzi(n)] = Xcca(k)

where Xccs(k) and Xcca(k) are the circular-even and circular-odd components of X (k) as
defined in Problem P5.18.

1. Prove this property analytically.

2. This property can be used to compute the DFTs of two real-valued N-point sequences
using one N-point DFT operation. Specifically, let z1(n) and x2(n) be two N-point
sequences. Then we can form a complex-valued sequence

z(n) = z1(n) + jra(n)
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and use this property. Develop a MATLAB function to implement this approach with
the following format.

function [X1,X2] = real2dft(x1,x2,N)
% DFTs of two real sequences

% [X1,X2] = real2dft(x1,x2,N)

% X1 = n-point DFT of x1

% X2 = n-point DFT of x2

% x1 = sequence of length <= N

% x2 = sequence of length <= N

% N = length of DFT

3. Compute and plot the DFTs of the following two sequences using this function.
z1(n) = cos(0.17mn), x2(n) =sin(0.27n); 0<n <39

P5.20 Using the frequency domain approach, devise a MATLAB function to determine a circular
shift ((n —m))n, given an Ni-point sequence x(n) where N1 < N. Your function should
have the following format.

function y = cirshftf(x,m,N)

% Circular shift of m samples wrt size N in sequence x: (freq domain)
YA
% y = cirshftf(x,m,N)

5 y : output sequence containing the circular shift
% X : input sequence of length <= N

YA m : sample shift

YA N : size of circular buffer

% Method: y(n) = idft(dft(x(n))*WN"(mk))

)

% If m is a scalar then y is a sequence (row vector)

% If m is a vector then y is a matrix, each row is a circular shift
% in x corresponding to entries in vecor m

% M and x should not be matrices

Verify your function on the following sequence

1‘(71) :{574737271,07071727374}7 Ogng 10
T

with (a) m = —5, N =12 and (b) m =8, N = 15.
P5.21 Using the analysis and synthesis equations of the DFT, show that the energy of a sequence

satisfies
N-1 1 N-1
4 2 _ 1 2
Ex =) lem)P =5 D IX(R)]
n=0 k=0

This is commonly referred to as a Parseval’s relation for the DFT. Verify this relation using
MATLAB on the sequence in Problem P5.20.
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206 Chapter 5 W THE DISCRETE FOURIER TRANSFORM

P5.22 A 512-point DFT X (k) of a real-valued sequence z(n) has the following DFT values:

X(0)=20+jo;  X(5)=20+730; X(k1)=—10+715; X(152)=17 + j23;
X(ks) =20 — j30; X(ks) =17 — j23; X (480) =—10 — j15; X (256)=30 + jf

and all other values are known to be zero.

1. Determine the real-valued coefficients o and (3.

2. Determine the values of the integers k1, k2, and ks.
3. Determine the energy of the signal x(n).

4. Express the sequence z(n) in a closed form.

P5.23 Let z(n) be a finite length sequence given by

z(n) = {...,0,0,0,1,2,3,4,5,0,...}
T

Determine and sketch the sequence z((—8 — n))7R7 (n) where

1,0<n<6
R (n) = { 0, elsewhere
P5.24 The circonvt function developed in this chapter implements the circular convolution as a
matrix-vector multiplication. The matrix corresponding to the circular shifts {z((n — m))n;
0 <n < N — 1} has an interesting structure. This matrix is called a circulant matrix, which
is a special case of Toeplitz matrix introduced in Chapter 2.

1. Consider the sequences given in Example 5.13. Express z1(n) as a column vector x; and
z2((n — m)) N as a circulant matrix X, with rows corresponding to n =0, 1,2, 3.
Characterize this matrix Xs. Can it completely be described by its first row (or column)?

2. Determine the circular convolution as X2x; and verify your calculations.

P5.25 Develop a MATLAB function to construct a circulant matrix C given an N-point sequence
z(n). Use the toeplitz function to implement matrix C. Your subroutine function should
have the following format:

function [C] = circulnt(x,N)

% Circulant Matrix from an N-point sequence
% [C] = circulnt(x,N)

% = circulant matrix of size NxN

% x = sequence of length <= N

% size of circulant matrix

= X Q
|

Using this function, modify the circular convolution function circonvt discussed in the

chapter so that the for...end loop is eliminated. Verify your functions on the sequences in
Problem P5.24.

P5.26 Using the frequency domain approach, devise a MATLAB function to implement the
circular convolution operation between two sequences. The format of the sequence should be
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function x3 = circonvf (x1,x2,N)

% Circular convolution in the frequency domain
% x3 = circonvf(x1,x2,N)

% x3 = convolution result of length N

% x1 = sequence of length <= N

% x2 = sequence of length <= N

% N = length of circular buffer

Using your function, compute the circular convolution {4,3,2,1} @ {1,2,3,4}.

P5.27 The following four sequences are given:
21(n) = {1,3,2, ~1}; 22(n) = {2,1,0, ~1}; z3(n) = 21(n) * 22(n); 2a(n) = 22(n) (&) 22(n)
T T

1. Determine and sketch x3(n).
2. Using z3(n) alone, determine and sketch x4(n). Do not directly compute z4(n).

P5.28 Compute the N-point circular convolution for the following sequences. Plot their samples.

1. z1(n) =sin(mn/3)Re(n), xz2(n) = cos(mn/4)Rs(n); N =10

2. z1(n) = cos (2rn/N)Rn(n), mz(n)—sm(27m/N)RN( ); N =32
3. x1(n) = (0.8)"Rn(n), z2(n) =(-0.8)"Rn(n); N =20

4. z1(n) =nRny(n), xz(n):( fn)RN( ); N =10

5. z1(n) = (0.8)"R20, x2(n) =wu(n) —u(n —40); N =50

P5.29 Let z1(n) and z2(n) be two N-point sequences.
1. If y(n) = z1(n) @ x2(n) show that

S i) = (Zm(n)) (Zu(n))

n=0

2. Verify this result for the following sequences.
331(?1) = {97 4’ _15 47 _47 _17 87 3}7 .'L'Q(TL) = {_57 67 27 —75 _57 27 27 —2}
P5.30 Let X (k) be the 8-point DFT of a 3-point sequence z(n) = {5, —4,3}. Let Y (k) be the
T

8-point DFT of a sequence y(n). Determine y(n) when Y (k) = W2* X (—k)s.

P5.31 For the following sequences compute (i) the N-point circular convolution z3(n) = z1(n)
@ z2(n), (ii) the linear convolution xz4(n) = z1(n) * z2(n), and (iii) the error sequence
e(n) = z3(n) — za(n).

z1(n) ={1,1,1,1}, a2(n) =cos(mn/4)Rs¢(n); N =8

z1(n) = cos (2mn/N) Ris(n), 2 (n) = sin (27n/N) Rla( ); N =32

z1(n) = (0.8)" Rio(n), z2(n) = (-0.8)" Rio(n); N =15

21(n) = nRuo(n),  wa(n) = (N —n) Rao(n); N = 10

zi(n) ={1,-1,1,-1}, z2(n)={1,0,—1,0}; N=5

In each case verify that e(n) = x4 (n + N).

9”:“9"!\’!—‘
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208 Chapter 5 W THE DISCRETE FOURIER TRANSFORM

P5.32 The overlap-add method of block convolution is an alternative to the overlap-save method.
Let xz(n) be a long sequence of length ML where M, L > 1. Divide z(n) into M segments
{zm(n), m=1,...,M} each of length L

(n) = z(n), mL<n<(m+1)L-1
Tm) =1 0, elsewhere

M-1
so that z(n) = Z xm(n)
m=0

Let h(n) be an L-point impulse response. Then

M—-1

y(n) =o(n) +h(n) = B wm(n) +h(n) = > ym(n);  ym(n) = m(n) « hn)

Clearly, ym(n) is a (2L — 1)-point sequence. In this method we have to save the
intermediate convolution results and then properly overlap these before adding to form the
final result y(n). To use DFT for this operation we have to choose N > (2L — 1).

1. Develop a MATLAB function to implement the overlap-add method using the circular
convolution operation. The format should be

function [y] = ovrlpadd(x,h,N)

% Overlap-Add method of block convolution
% [yl = ovrlpadd(x,h,N)

h
h
h
h
h

output sequence

input sequence

impulse response

block length >= 2*length(h)-1

=2 P X<
non

2. Incorporate the radix-2 FFT implementation in this function to obtain a high-speed
overlap-add block convolution routine. Remember to choose N = 2.
3. Verify your functions on the following two sequences

z(n) = cos (mn/500) Raooo(n), h(n)={1,-1,1,—1}
P5.33 Given the following sequences z1(n) and zz(n):
x1(n):{2,1,1,2}, 2?2(71):{1,—1,—1,1}

1. Compute the circular convolution z1(n) @ z2(n) for N =4, 7, and 8.

Compute the linear convolution z1(n) * z2(n).

3. Using results of calculations, determine the minimum value of N necessary so that linear
and circular convolutions are same on the N-point interval.

4. Without performing the actual convolutions, explain how you could have obtained the
result of P5.33.3.

N

P5.34 Let

x(n):{Acos(Zwﬂn/NL 0<n<N-1 _ Acos (276n/N) R (n)

0, elsewhere
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where /¢ is an integer. Notice that x(n) contains ezactly £ periods (or cycles) of the cosine
waveform in N samples. This is a windowed cosine sequence containing no leakage.

1. Show that the DFT X (k) is a real sequence given by

AN AN

2. Show that if £ = 0, then the DFT X (k) is given by

(k—N+YL); 0<k<(N-1), 0<{l<N

X(k) = AN§(k); 0<k<(N-1)

3. Explain clearly how these results should be modified if £ < 0 or £ > N.
4. Verify the results of parts 1, 2, and 3 using the following sequences. Plot the real parts of
the DFT sequences using the stem function.

(a) xz1(n) = 3cos(0.047n) Raoo(n)

(b) @2(n) = 5Rs0(n)

(¢) z3(n) =[1+ 2cos (0.57n) + cos (7n)] Rioo(n)
(d) z4(n) = cos (25mn/16) Rea(n)

(e) xz5(n) = [4cos(0.1mn) — 3 cos (1.97n)] Rao(n)

P5.35 Let z(n) = Acos (won) Rn(n), where wy is a real number.
1. Using the properties of the DFT, show that the real and the imaginary parts of X (k) are
given by
X (k)= Xn(k) + jX1(k)

sin [7 (k — foN)]
sin [w(k — foN)/N]

sin[r (k— N + foN)]
sin [r(k — N + foN)/N]

sin [ (k — foN)]
sin [w(k — foN)/N]

sin [ (k— N + foN)]
sin[r(k — N + foN)/N]

Xr(k)=(A/2) cos [T (k — foNN)]

+ (A/2) cos [”(]\1]\,_1) (k+ foN)]

Xr(k)=—(A/2)sin [5~ (k — foN)]

— (A/2)sin [Z5ZD (k + fuN)]

2. This result implies that the original frequency wo of the cosine waveform has leaked into
other frequencies that form the harmonics of the time-limited sequence, and hence it is
called the leakage property of cosines. It is a natural result due to the fact that
bandlimited periodic cosines are sampled over noninteger periods. Explain this result
using the periodic extension Z(n) of z(n) and the result in Problem P5.34.1.

3. Verify the leakage property using z(n) = cos (571/99) R200(n). Plot the real and the
imaginary parts of X (k) using the stem function.

P5.36 Let

= Asin (271¢n/N)Rn(n)

(n) = Asin (2mén/N), 0<n <N -1
=90, Elsewhere
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210 Chapter 5 W THE DISCRETE FOURIER TRANSFORM

where ¢ is an integer. Notice that x(n) contains ezactly £ periods (or cycles) of the sine
waveform in N samples. This is a windowed sine sequence containing no leakage.

1. Show that the DFT X (k) is a purely imaginary sequence given by

X(k):é—N&(ku)fé—Né(kaJré); 0<k<(N-1), 0<i{<N
J J
2. Show that if £ = 0, then the DFT X (k) is given by

X(k)=0; 0<k<(N—1)

3. Explain clearly how these results should be modified if £ < 0 or £ > N.

4. Verify the results of parts 1, 2, and 3 using the following sequences. Plot the imaginary
parts of the DFT sequences using the stem function.

(a) z1(n) = 3sin (0.047n) Rao0(n)

(b) z2(n) = 5sin 10mnRs0(n)

(¢) z3(n) = [2sin (0.57n) + sin (7n)] R1ioo(n)

(d) za(n) =sin (257n/16) Rea(n)

) x5(n) = [4sin (0.17n) — 3sin (1.97n)] Rao(n)

[oW

(e
P5.37 Let 2(n) = Asin (won) Ry(n), where wp is a real number.
1. Using the properties of the DFT, show that the real and the imaginary parts of X (k) are
given by
X(k) = Xgr(k) +jX1(k)
sin [7 (k — foN)]
sin [w(k — foN)/N]
sin[r (k — N + foN)]
sin[r(k — N + foN)/N]
sin [7 (k — foN)]
sin [7(k — foN)/N]
sin [ (k — N + foN)]
sin[r(k — N + foN)/N]

Xr(k) = —(A/2)sin [% (k— fON)}

+(A/2)sin [Z5ZD (k + foN)]

Xr(k) = — (A/2) cos [Z5Z (k — foN)]

+(A/2) cos [*ED (k + foN)]

2. This result is the leakage property of sines. Explain it using the periodic extension Z(n)
of z(n) and the result in Problem P5.36.1.

3. Verify the leakage property using z(n) = sin (57n/99) Rioo(n). Plot the real and the
imaginary parts of X (k) using the stem function.

P5.38 An analog signal z,(t) = 2sin (47t) + 5 cos (87t) is sampled at ¢t = 0.01n for
n=20,1,...,N — 1 to obtain an N-point sequence z(n). An N-point DFT is used to obtain
an estimate of the magnitude spectrum of z4(t).

1. From the following values of N, choose the one that will provide the accurate estimate of
the spectrum of z4(t). Plot the real and imaginary parts of the DFT spectrum X (k).
(a) N =40, (b) N =50, (¢) N =60.
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2. From the following values of N, choose the one that will provide the least amount of
leakage in the spectrum of z4(t). Plot the real and imaginary parts of the DFT spectrum
X (k). (a) N =90, (b) N =95, (¢) N =99.

P5.39 Using (5.49), determine and draw the signal flow graph for the NV = 8 point, radix-2
decimation-in-frequency FFT algorithm. Using this flow graph, determine the DFT of the
sequence

z(n) =cos(mn/2), 0<n<7T

P5.40 Using (5.49), determine and draw the signal flow graph for the N = 16 point, radix-4
decimation-in-time FFT algorithm. Using this flow graph, determine the DFT of the
sequence

z(n) =cos(mn/2), 0<n<15
P5.41 Let z(n) be a uniformly distributed random number between [—1,1] for 0 < n < 10°. Let
h(n) = sin(0.47n), 0<mn <100

1. Using the conv function, determine the output sequence y(n) = z(n) * h(n).

2. Consider the overlap-and-save method of block convolution along with the FFT
algorithm to implement high-speed block convolution. Using this approach, determine
y(n) with FFT sizes of 1024, 2048, and 4096.

3. Compare these approaches in terms of the convolution results and their execution times.
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CHAPTER

Implementation
of Discrete-time
Filters

In earlier chapters we studied the theory of discrete systems in both the
time and frequency domains. We will now use this theory for the process-
ing of digital signals. To process signals, we have to design and implement
systems called filters (or spectrum analyzers in some contexts). The filter
design issue is influenced by such factors as the type of the filter (i.e., IIR
or FIR) or the form of its implementation (structures). Hence, before we
discuss the design issue, we first concern ourselves with how these filters
can be implemented in practice. This is an important concern because
different filter structures dictate different design strategies.

IR filters as designed and used in DSP, can be modeled by rational
system functions or, equivalently, by difference equations. Such filters are
termed autoregressive moving average (ARMA) or, more generally, as re-
cursive filters. Although ARMA filters include moving average filters that
are FIR filters, we will treat FIR filters separately from IIR filters for both
design and implementation purposes.

In addition to describing various filter structures, we also begin to con-
sider problems associated with quantization effects when finite-precision
arithmetic is used in the implementation. Digital hardware contains pro-
cessing elements that use finite-precision arithmetic. When filters are im-
plemented either in hardware or in software, filter coefficients as well as
filter operations are subjected to the effects of these finite-precision op-
erations. In this chapter, we treat the effects on filter frequency response

212
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characteristics due to coefficient quantization. In Chapter 10, we will con-
sider the round-off noise effects in the digital filter implementations.

We begin with a description of basic building blocks that are used
to describe filter structures. In the subsequent sections, we briefly de-
scribe IIR, FIR, and lattice filter structures, respectively, and provide
MATLAB functions to implement these structures. This is followed by
a brief treatment of the representation of numbers and the resulting er-
ror characteristics, which is then used to analyze coefficient quantization
effects.

6.1 BASIC ELEMENTS
i

Since our filters are LTI systems, we need the following three elements to
describe digital filter structures. These elements are shown in Figure 6.1.

1. Adder: This element has two inputs and one output and is shown in
Figure 6.1a. Note that the addition of three or more signals is imple-
mented by successive two-input adders.

2. Multiplier (gain): This is a single-input, single-output element and is
shown in Figure 6.1b. Note that the multiplication by 1 is understood
and hence not explicitly shown.

3. Delay element (shifter or memory): This element delays the sig-
nal passing through it by one sample, as shown in Figure 6.1c. It is
implemented by using a shift register.

Using these basic elements, we can now describe various structures of
both IIR and FIR filters. MATLAB is a convenient tool in the develop-
ment of these structures that require operations on polynomials.

Xx;(n) ® > . > ® x,(n) + x,(n)
ot /

(a) Adder
a 7!
x(n) &—>———@ ax(n) x(n) &—>—e x(n-1)
(b) Multiplier (c) Delay element

FIGURE 6.1 Three basic elements
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214 Chapter 6 W IMPLEMENTATION OF DISCRETE-TIME FILTERS

6.2 IIR FILTER STRUCTURES
i

The system function of an IIR filter is given by

H(z) = B(2) _ Spcgbnz™ _botbiz e 4 bys M ap =1
AZ) T YN gan lTtar ot tayz V)
(6.1)

where b,, and a,, are the coefficients of the filter. We have assumed without
loss of generality that ag = 1. The order of such an IIR filter is called N if
an # 0. The difference equation representation of an IIR filter is expressed
as

M N
y(n) = Z bpmx(n —m) — Z amy(n —m) (6.2)
m=0 m=1

Three different structures can be used to implement an IIR filter:

1. Direct form: In this form the difference equation (6.2) is implemented
directly as given. There are two parts to this filter, namely the moving
average part and the recursive part (or equivalently, the numerator
and denominator parts). Therefore this implementation leads to two
versions: direct form I and direct form II structures.

2. Cascade form: In this form the system function H(z) in equation
(6.1) is factored into smaller 2nd-order sections, called biquads. The
system function is then represented as a product of these biquads. Each
biquad is implemented in a direct form, and the entire system function
is implemented as a cascade of biquad sections.

3. Parallel form: This is similar to the cascade form, but after factor-
ization, a partial fraction expansion is used to represent H(z) as a sum
of smaller 2nd-order sections. Each section is again implemented in a
direct form, and the entire system function is implemented as a parallel
network of sections.

We will briefly discuss these forms in this section. IIR filters are gen-
erally described using the rational form version (or the direct form struc-
ture) of the system function. Hence we will provide MATLAB functions for
converting direct form structures to cascade and parallel form structures.

6.2.1 DIRECT FORM

As the name suggests, the difference equation (6.2) is implemented as
given using delays, multipliers, and adders. For the purpose of illustration,
let M = N = 4. Then the difference equation is

y(n) = boz(n) + byz(n — 1) + box(n — 2) + bgx(n — 3) + byz(n — 4)
—a1y(n —1) — agy(n — 2) — azy(n — 3) — asy(n — 4)
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by
x(n) e—> > > >—e y(n}
Yz7' A A ~a, Yz
> <
-1 A
Yz b A A -a, Yz
> <
yz ! by A A ~ay yz !
Yz7' A A —a, yz!
> <

FIGURE 6.2 Direct form I structure

which can be implemented as shown in Figure 6.2. This block diagram is
called direct form I structure.

The direct form I structure implements each part of the rational
function H(z) separately with a cascade connection between them. The
numerator part is a tapped delay line followed by the denominator part,
which is a feedback tapped delay line. Thus there are two separate delay
lines in this structure, and hence it requires eight delay elements. We
can reduce this delay element count or eliminate one delay line by inter-
changing the order in which the two parts are connected in the cascade.
Now the two delay lines are close to each other, connected by a unity
gain branch. Therefore one delay line can be removed, and this reduction
leads to a canonical structure called direct form II structure, shown in
Figure 6.3. It should be noted that both direct forms are equivalent from
the input-output point of view. Internally, however, they have different

signals.
b y(n)  x(n) b
x(n) 2 2 y(n)
-1 -1
—ay 0 b b, 0 —a
z! z!
—ay b, b, —ay
_ z! '
as by by as
_ z! '
ay by by ay
(a) Normal (b) Transposed

FIGURE 6.3 Direct form II structure
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6.2.2 TRANSPOSED STRUCTURE
An equivalent structure to the direct form can be obtained using a pro-
cedure called transposition. In this operation three steps are performed:

1. All path arrow directions are reversed.

2. All branch nodes are replaced by adder nodes, and all adder nodes are
replaced by branch nodes.

3. The input and output nodes are interchanged.

The resulting structure is called the transposed direct form structure. The
transposed direct form II structure is shown in Figure 6.3b. Problem P6.3
explains this equivalent structure.

6.2.3 MATLAB IMPLEMENTATION
In MATLAB the direct form structure is described by two row vectors;
b containing the {b,} coefficients and a containing the {a,} coefficients.
The filter function, which is discussed in Chapter 2, implements the
transposed direct form II structure.

6.2.4 CASCADE FORM

In this form the system function H(z) is written as a product of 2nd-order
sections with real coefficients. This is done by factoring the numerator and
denominator polynomials into their respective roots and then combining
either a complex conjugate root pair or any two real roots into 2nd-order
polynomials. In the remainder of this chapter, we assume that N is an
even integer. Then

bo+ bzt + -+ byz N

H =
(2) 1+a1z7 4+ +ayz™V
14+ @3z 4 SN
T Y ar T+ anz N
K
1+ Bp1z"t+ By oz 2
=bo [[ 27 L (6.3)
Pt 1+ Akvlz + Ak722
where K is equal to %, and By 1, B2, Ag,1, and Ay 2 are real numbers

representing the coefficients of 2nd-order sections. The 2nd-order section

H (Z) _ Yk+1(z) _ 1+ Bk712’71 —+ Bk,gz’Q.
k Y}g(z) 1 —i—Ak’lz—l +Ak’2Z_2,

k=1,....K
with
Yi(2) = boX (=) Yioa() = Y(2)

is called the kth biquad section. The input to the kth biquad section is
the output from the (k — 1)th biquad section, and the output from the
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V() = X . 4(n) &— > > ey, . 1(n]
1
A ~Ag 1 Yz B+ A
- >
1
+ A 1% B \

FIGURE 6.4 Biquad section structure

kth biquad is the input to the (k4 1)th biquad. Now each biquad section
Hy(z) can be implemented in direct form II, as shown in Figure 6.4. The
entire filter is then implemented as a cascade of biquads.

As an example, consider N = 4. Figure 6.5 shows a cascade form
structure for this 4th-order IIR filter.

6.2.5 MATLAB IMPLEMENTATION

Given the coefficients {b,} and {a,} of the direct form filter, we have to
obtain the coefficients by, { By ; }, and { A ;}. This is done by the following
function dir2cas.

function [b0,B,A] = dir2cas(b,a);

% DIRECT-form to CASCADE-form conversion (cplxpair version)
% -
% [b0,B,A] = dir2cas(b,a)

% b0 = gain coefficient

= K by 3 matrix of real coefficients containing bk’s
= K by 3 matrix of real coefficients containing ak’s
numerator polynomial coefficients of DIRECT form
denominator polynomial coefficients of DIRECT form

==
p o = W

% compute gain coefficient b0

b0 = b(1); b = b/b0; a0 = a(1); a = a/a0; b0 = b0/a0l;
YA

M = length(b); N = length(a);

if N > M

b = [b zeros(1,N-M)];

bo
x(n) e—— > > > > > >—e y(n]
1 1
Y
r -Aa Y2 B, 1 A G\
- —a h -
- v - y
1 1
Y
A —A; Yz Bys A A —A,y, Yz By A
< > -« >

FIGURE 6.5 Cascade form structure for N = 4
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elseif M > N

a = [a zeros(1,M-N)]; N = M;

else

NM = 0;

end

%

K = floor(N/2); B = zeros(K,3); A = zeros(X,3);

if Kx2 == N;
b=1[b0]; a= [ao0];
end

YA
broots = cplxpair(roots(b)); aroots = cplxpair(roots(a));
for i=1:2:2xK

Brow = broots(i:1:i+1,:); Brow = real(poly(Brow));
B(fix((i+1)/2),:) = Brow;

Arow = aroots(i:1:i+1,:); Arow = real(poly(Arow));
A(fix((i+1)/2),:) = Arow;

end

This function converts the b and a vectors into K x 3 B and A matrices.
It begins by computing by, which is equal to by/ag (assuming ag # 1).
It then makes the vectors b and a of equal length by zero-padding the
shorter vector. This ensures that each biquad has a nonzero numerator
and denominator. Next it computes the roots of the B(z) and A(z) poly-
nomials. Using the cplxpair function, these roots are ordered in complex
conjugate pairs. Now every pair is converted back into a 2nd-order numer-
ator or denominator polynomial using the poly function. The SP toolbox
function, tf2sos (transfer function to 2nd-order section), also performs
a similar operation.

The cascade form is implemented using the following casfiltr
function.

function y = casfiltr(b0,B,A,x);

% CASCADE form realization of IIR and FIR filters
% - _
% y = casfiltr(b0,B,A,x);

% y = output sequence

% b0 = gain coefficient of CASCADE form

% B = K by 3 matrix of real coefficients containing bk’s
% A =K by 3 matrix of real coefficients containing ak’s
% x = input sequence

[K,L] = size(B);
N = length(x); w = zeros(K+1,N); w(l,:) = x;
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for i = 1:1:K

w(i+l,:) = filter(B(i,:),A(d,:),w(i,:));
end
y = bO*w(K+1,:);

It employs the filter function in a loop using the coefficients of
each biquad stored in B and A matrices. The input is scaled by bO,
and the output of each filter operation is used as an input to the next
filter operation. The output of the final filter operation is the overall
output.

The following MATLAB function, cas2dir, converts a cascade form
to a direct form. This is a simple operation that involves multiplication of
several 2nd-order polynomials. For this purpose, the MATLAB function
conv is used in a loop over K factors. The SP toolbox function, sos2tf
also performs a similar operation.

function [b,al] = cas2dir(b0,B,A);

% CASCADE-to-DIRECT form conversion

W = -

% [b,a]l = cas2dir(b0,B,A)

% b = numerator polynomial coefficients of DIRECT form
% a = denominator polynomial coefficients of DIRECT form

% b0 = gain coefficient
% B =K by 3 matrix of real coefficients containing bk’s
% A =K by 3 matrix of real coefficients containing ak’s

[K,L] = size(B);

b=[1]; a = [1];

for i=1:1:K

b=conv(b,B(i,:)); a=conv(a,A(i,:));
end

b = bxb0;

O EXAMPLE 6.1 A filter is described by the following difference equation:

16y(n) + 12y(n — 1) +2y(n — 2) —4y(n — 3) —y(n — 4)
=z(n) — 3z(n — 1) + 11lz(n — 2) — 27z(n — 3) + 18z(n — 4)

Determine its cascaded form structure.
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Solution MATLAB script:

>> b=[1 -3 11 -27 18]; a=[16 12 2 -4 -1];
>> [b0,B,Al=dir2cas(b,a)

b0 = 0.0625
B =
1.0000 -0.0000 9.0000
1.0000 -3.0000 2.0000
A =

1.0000 1.0000 0.5000
1.0000 -0.2500 -0.1250

The resulting structure is shown in Figure 6.6. To check that our cascade struc-
ture is correct, let us compute the first 8 samples of the impulse response using
both forms.

>> delta = impseq(0,0,7)
delta =
1 0 0 0 0 0 0 0
>> format long
>> hcas=casfiltr(b0,B,A,delta)
hcas =
Columns 1 through 4
0.06250000000000 -0.23437500000000  0.85546875000000 -2.28417968750000
Columns 5 through 8
2.67651367187500 -1.52264404296875  0.28984069824219  0.49931716918945
>> hdir=filter(b,a,delta)
hdir =
Columns 1 through 4
0.06250000000000 -0.23437500000000 0.85546875000000 -2.28417968750000
Columns 5 through 8
2.67651367187500 -1.52264404296875  0.28984069824219  0.49931716918945

O
. 0.625 »
x(n) e—> > > > > > >—ey(n
A o yz ! 0 A A 0.5 R A
= -1
A 0.5 Yz 9 A A 0.126 Yz 2 A

FIGURE 6.6 Cascade structure in Example 6.1
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6.2.6 PARALLEL FORM
In this form the system function H(z) is written as a sum of 2nd-order
sections using partial fraction expansion.

B(z)  bo+biz7 '+ by M
A(z)  1+4azt+---+ayz VN

H(z) =

bo e bial e by g - N MEN
o+ 0127 + +O0Nn_12 4 Z C’szk
0

1+az7t 4+ +anz™N

—_———
only if M>N

K

M-N
Byo+ Bp1z7! —k
= o Tk, 4
; 1+Ak,12_1+Ak,2z_2+ ; Cyz (6.4)

—_———
only if M>N

where K is equal to %, and By, Br1, Ak1, and Ag o are real num-

bers representing the coefficients of 2nd-order sections. The 2nd-order
section

o = Vi) | Buat B
k Yk(z) 1+ Asz_l + 141€722,’_27

k=1,... K

with

Yile) = Hu()X(2), Y(z) =3 Yi(z), M<N

is the kth proper rational biquad section. The filter input is available to
all biquad sections as well as to the polynomial section if M > N (which
is an FIR part). The output from these sections is summed to form the
filter output. Now each biquad section Hy(z) can be implemented in direct
form II. Due to the summation of subsections, a parallel structure can be
built to realize H(z). As an example, consider M = N = 4. Figure 6.7
shows a parallel-form structure for this 4th-order IIR filter.

6.2.7 MATLAB IMPLEMENTATION
The following function dir2par converts the direct-form coefficients {b,, }
and {a,} into parallel form coefficients {By;} and {A;}.
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FIGURE 6.7 Parallel form structure for N = 4

function [C,B,A] = dir2par(b,a);

% DIRECT-form to PARALLEL-form conversion

/R —_—

% [C,B,A] = dir2par(b,a)

% C = Polynomial part when length(b) >= length(a)

% B =K by 2 matrix of real coefficients containing bk’s
% A =K by 3 matrix of real coefficients containing ak’s
% b = numerator polynomial coefficients of DIRECT form

% a = denominator polynomial coefficients of DIRECT form
)

M = length(b); N = length(a);

[r1,p1,C] = residuez(b,a);
p = cplxpair(pl,10000000*eps); I = cplxcomp(pl,p); r = ri(I);

K floor(N/2); B = zeros(X,2); A = zeros(K,3);
if K*2 == N; %N even, order of A(z) odd, one factor is first order
for i=1:2:N-2

Brow = r(i:1:i+1,:); Arow = p(i:1:i+1,:);

[Brow,Arow] = residuez(Brow,Arow,[]);

B(fix((i+1)/2),:) = real(Brow); A(fix((i+1)/2),:) = real(Arow);
end

[Brow,Arow] = residuez(r(N-1),p(N-1),[]1);

B(X,:) = [real(Brow) 0]; A(K,:) = [real(Arow) 0];
else
for i=1:2:N-1
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Brow = r(i:1:i+1,:); Arow = p(i:1:i+1,:);

[Brow,Arow] = residuez(Brow,Arow,[]);

B(fix((i+1)/2),:) = real(Brow); A(fix((i+1)/2),:) = real(Arow);
end

end

The dir2cas function first computes the z-domain partial fraction expan-
sion using the residuez function. We need to arrange pole-and-residue
pairs into complex conjugate pole-and-residue pairs followed by real pole-
and-residue pairs. To do this, the cplxpair function from MATLAB can
be used; this sorts a complex array into complex conjugate pairs. How-
ever, two consecutive calls to this function, one each for pole and residue
arrays, will not guarantee that poles and residues will correspond to each
other. Therefore a new cplxcomp function is developed, which compares
two shuffled complex arrays and returns the index of one array, which can
be used to rearrange another array.

function I = cplxcomp(pl,p2)
% I = cplxcomp(pl,p2)
% Compares two complex pairs which contain the same scalar elements
% but (possibly) at differrent indices. This routine should be
% wused after CPLXPAIR routine for rearranging pole vector and its
% corresponding residue vector.
% p2 = cplxpair(pl)
pA
I=[1;
for j=1:1:length(p2)
for i=1:1:length(pl)
if (abs(p1(i)-p2(j)) < 0.0001)
I=[1,i];
end
end
end
I=I’;

After collecting these pole-and-residue pairs, the dir2cas function com-
putes the numerator and denominator of the biquads by employing the
residuez function in the reverse fashion.

These parallel-form coefficients are then used in the function
parfiltr, which implements the parallel form. The parfiltr function
uses the filter function in a loop using the coefficients of each biquad
stored in the B and A matrices. The input is first filtered through the FIR
part C and stored in the first row of a w matrix. Then the outputs of all
biquad filters are computed for the same input and stored as subsequent
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rows in the w matrix. Finally, all the columns of the w matrix are summed
to yield the output.

function y = parfiltr(C,B,A,x);

% PARALLEL form realization of IIR filters
% -
% [yl = parfiltr(C,B,A,x);

% y = output sequence

% C = polynomial (FIR) part when M >= N

% B = K by 2 matrix of real coefficients containing bk’s
% A =K by 3 matrix of real coefficients containing ak’s
% x = input sequence

[K,L] = size(B); N = length(x); w = zeros(K+1,N);
w(l,:) = filter(C,1,x);
for i = 1:1:K
w(i+l,:) = filter(B(i,:),A(i,:),x);
end
y = sum(w);

To obtain a direct form from a parallel form, the function par2dir can
be used. It computes poles and residues of each proper biquad and com-
bines these into system poles and residues. Another call of the residuez
function in reverse order computes the numerator and denominator
polynomials.

function [b,a] = par2dir(C,B,A);

% PARALLEL-to-DIRECT form conversion

W = —

% [b,al = par2dir(C,B,A)

= numerator polynomial coefficients of DIRECT form
denominator polynomial coefficients of DIRECT form
Polynomial part of PARALLEL form

K by 2 matrix of real coefficients containing bk’s
K by 3 matrix of real coefficients containing ak’s

b,
b
a
% C
B
A

[K,L] = size(A); R = [1; P = [1;

for i=1:1:K
[r,p,k]l=residuez(B(i,:),A(i,:)); R = [R;r]l; P = [P;p];
end

[b,a] = residuez(R,P,C); b =b(:)’; a = a(:)’;
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O EXAMPLE 6.2  Consider the filter given in Example 6.1.

16y(n) + 12y(n — 1) + 2y(n — 2) —4y(n — 3) —y(n — 4)
=z(n) —3z(n — 1) + 11lz(n — 2) — 27z(n — 3) + 18z(n — 4)

Now determine its parallel form.

Solution MATLARB script:

>> b=[1 -3 11 -27 18]; a=[16 12 2 -4 -1];
>> [C,B,A]l=dir2par(b,a)
C =
-18
B =
10.0500 -3.9500
28.1125 -13.3625
A =
1.0000 1.0000 0.5000
1.0000 -0.2500 -0.1250

The resulting structure is shown in Figure 6.8. To check our parallel structure,
let us compute the first 8 samples of the impulse response using both forms.

>> format long; delta = impseq(0,0,7); hpar=parfiltr(C,B,A,delta)
hpar =
Columns 1 through 4
0.06250000000000 -0.23437500000000 0.85546875000000 -2.28417968750000

_‘JS
A —-10.05 Y
1
A - Y2 ' 395 A
A < > Y
1
A _oos Y
x(n) —>—¢ < —>——=o y(nl
Y
) 28.1125 A
> ] > = > k >
r 025 ~13.3625
-1
r o128 Y?

FIGURE 6.8 Parallel form structure in Example 6.2
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Columns 5 through 8

2.67651367187500 -1.52264404296875  0.28984069824219  0.49931716918945
>> hdir = filter(b,a,delta)
hdir =

Columns 1 through 4

0.06250000000000 -0.23437500000000  0.85546875000000 -2.28417968750000

Columns 5 through 8

2.67651367187500 -1.52264404296875  0.28984069824219  0.49931716918945

O

O EXAMPLE 6.3 What would be the overall direct, cascade, or parallel form if a structure contains
a combination of these forms? Consider the block diagram shown in Figure 6.9.

Solution This structure contains a cascade of two parallel sections. The first parallel
section contains 2 biquads, while the second one contains 3 biquads. We will have
to convert each parallel section into a direct form using the par2dir function,
giving us a cascade of 2 direct forms. The overall direct form can be computed
by convolving the corresponding numerator and denominator polynomials. The
overall cascade and parallel forms can now be derived from the direct form.

MATLAB script:

>> C0=0; B1=[2 4;3 1]; A1=[1 1 0.9; 1 0.4 -0.4];
>> B2=[0.5 0.7;1.5 2.5;0.8 1]; A2=[1 -1 0.8;1 0.5 0.5;1 0 -0.5];
>> [bl,al]l=par2dir(C0,B1,A1)
bl =
5.0000 8.8000 4.5000 -0.7000

0.5
- > > .
-1
z
A 1 Y 0.7 A
< >
1
2 A A —08 Yz Y
e > > > -
1
S Yz ', A 15
A < > ¥ > > >
-1 -1
y 2 h y Z Y
A o9 ) 4 A o5 y 25 A Y
x(n) e—>»—e - 3 -« B —>—o y(n)
Y 3 A A —os Y
> > > > Y ~« A
1
Z
r —0a Y 1 A 0.8
< B > - - >
1
1 4
A o4 Yz A 0 A 1 A
- - -
9 1
A 0.5 Yz

FIGURE 6.9 Block diagram in Example 6.3
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al =

1.0000 1.4000 0.9000 -0.0400 -0.3600
>> [b2,a2]=par2dir(C0,B2,A2)
b2
.8000 2.5500 -1.5600 2.0950 0.5700 -0.7750
a2

=N

.0000 -0.5000 0.3000 0.1500 0.0000 0.0500 -0.2000
>> b=conv(bl,b2) % Overall direct form numerator
b =
Columns 1 through 7
14.0000 37.3900 27.2400 6.2620 12.4810 11.6605 -5.7215
Columns 8 through 9
-3.8865 0.5425
>> a=conv(al,a2) % Overall direct form denominator
2 =
Columns 1 through 7
1.0000 0.9000 0.5000 0.0800 0.1400 0.3530 -0.2440
Columns 8 through 11
-0.2890 -0.1820 -0.0100 0.0720
>> [b0,Bc,Ac]=dir2cas(b,a) % Overall cascade form

b0 =
14.0000

Bc =
1.0000 1.8836 1.1328
1.0000 -0.6915 0.6719
1.0000 2.0776 0.8666
1.0000 0 0
1.0000 -0.5990 0.0588

Ac =
1.0000 1.0000 0.9000
1.0000 0.5000 0.5000
1.0000 -1.0000 0.8000
1.0000 1.5704 0.6105

1.0000 -1.1704 0.3276
>> [CO,Bp,Apl=dir2par(b,a) % Overall parallel form
co = []
Bp =
-20.4201 -1.6000
24.1602 5.1448
2.4570 3.3774
-0.8101  -0.2382
8.6129  -4.0439

.0000 1.0000 0.9000
.0000 0.5000 0.5000
.0000 -1.0000 0.8000
.0000 1.5704 0.6105
.0000 -1.1704 0.3276

N N
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228 Chapter 6 W IMPLEMENTATION OF DISCRETE-TIME FILTERS

This example shows that by using the MATLAB functions developed in this
section, we can probe and construct a wide variety of structures. O

6.3 FIR FILTER STRUCTURES
i

A finite-duration impulse response filter has a system function of the form
M—1

H(z)=by+biz7 - Fby12t7M = Z bz " (6.5)
n=0

Hence the impulse response h(n) is

h()—{b"’ 0<n<M-1 (6.6)

10, else
and the difference equation representation is
y(n) =box(n) + byz(n — 1) + - + bpyr—1z(n — M + 1) (6.7)

which is a linear convolution of finite support.

The order of the filter is M — 1, and the length of the filter (which
is equal to the number of coefficients) is M. The FIR filter structures are
always stable, and they are relatively simple compared to IIR structures.
Furthermore, FIR filters can be designed to have a linear-phase response,
which is desirable in some applications.

We will consider the following four structures:

1. Direct form: In this form the difference equation (6.7) is implemented
directly as given.

2. Cascade form: In this form the system function H(z) in (6.5) is fac-
tored into 2nd-order factors, which are then implemented in a cascade
connection.

3. Linear-phase form: When an FIR filter has a linear-phase response,
its impulse response exhibits certain symmetry conditions. In this form
we exploit these symmetry relations to reduce multiplications by about
half.

4. Frequency-sampling form: This structure is based on the DFT of
the impulse response h(n) and leads to a parallel structure. It is also
suitable for a design technique based on the sampling of frequency
response H (e/*).

We will briefly describe these four forms along with some examples.
The MATLAB function dir2cas developed in the previous section is also
applicable for the cascade form.
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x(n) e—> ‘:1 ‘:l ‘:1
z z z

Y by Y b, Yb, Y bs Y b,

A 4
/

e y(n]

Y
Y

¥

FIGURE 6.10 Direct form FIR structure

6.3.1 DIRECT FORM
The difference equation (6.7) is implemented as a tapped delay line since
there are no feedback paths. Let M =5 (i.e., a 4th-order FIR filter); then

y(n) = box(n) + biz(n — 1) + bax(n — 2) + bgz(n — 3) + byx(n — 4)

The direct form structure is given in Figure 6.10. Note that since the
denominator is equal to unity, there is only one direct form structure.

6.3.2 MATLAB IMPLEMENTATION

In MATLAB the direct form FIR structure is described by the row vector
b containing the {b,} coefficients. The structure is implemented by the
filter function, in which the vector a is set to the scalar value 1, as
discussed in Chapter 2.

6.3.3 CASCADE FORM

This form is similar to that of the IIR form. The system function H(z) is
converted into products of 2nd-order sections with real coefficients. These
sections are implemented in direct form and the entire filter as a cascade
of 2nd-order sections. From (6.5)

H(z) = bo+biz 7t 4o by gz MH (6.8)
=bo |1+ ﬁz—l 4ot belz—MJrl
bo bo
K

= bo H (14 Byaz™' + Bipz?)
k=1

where K is equal to L%J, and By 1 and By, » are real numbers representing
the coefficients of 2nd-order sections. For M = 7 the cascade form is shown
in Figure 6.11.

by
x(n) &—> > > > > > >—e y(n]
Yz 1 B1 g A Yz 1 82 . A Yz ! 831 A
= = =
Yz % 5 A Yz ?__2.2 A Yz ?-32 A

FIGURE 6.11 Cascade form FIR structure
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230 Chapter 6 B IMPLEMENTATION OF DISCRETE-TIME FILTERS

6.3.4 MATLAB IMPLEMENTATION

Although it is possible to develop a new MATLAB function for the FIR
cascade form, we will use our dir2cas function by setting the denominator
vector a equal to 1. Similarly, cas2dir can be used to obtain the direct
form from the cascade form.

6.3.5 LINEAR-PHASE FORM
For frequency-selective filters (e.g., lowpass filters) it is generally desirable
to have a phase response that is a linear function of frequency; that is, we
want

LHEY) = —-aw, —m<w<T (6.9)

where 8 = 0 or £7/2 and « is a constant. For a causal FIR filter with
impulse response over [0, M — 1] interval, the linear-phase condition (6.9)
imposes the following symmetry conditions on the impulse response h(n)
(see Problem P6.16):

M-1

h(n) = (M —1-n); f=0a=——7—0<n<M-1 (6.10)

h(n) = —=h(M — 1 —n); ﬂziw/2,a=$,oﬁn§M—1 (6.11)

An impulse response that satisfies (6.10) is called a symmetric impulse
response, and that in (6.11) is called an antisymmetric impulse response.
These symmetry conditions can now be exploited in a structure called the
linear-phase form.

Consider the difference equation given in (6.7) with a symmetric im-
pulse response in (6.10). We have

y(n) = boz(n) + biz(n —1) + -+ bix(n — M +2) + box(n — M + 1)
= bolz(n) +z(n —M+ D]+ bifz(n—-1)+z(n —M+2)] +---

The block diagram implementation of these difference equation is shown
in Figure 6.12 for both odd and even M.

Clearly, this structure requires 50% fewer multiplications than the di-
rect form. A similar structure can be derived for an antisymmetric impulse
response.

6.3.6 MATLAB IMPLEMENTATION

The linear-phase structure is essentially a direct form drawn differently
to save on multiplications. Hence in a MATLAB representation of the
linear-phase structure is equivalent to the direct form.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materialy affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions requireit.



FIR Filter Structures 231

x(n) z 1 z 1 x(n) 2] z

bg Y by Y b,

y(n]

[
Y
A
kA

M=7 M=6

FIGURE 6.12 Linear-phase form FIR structures (symmetric impulse response)

O EXAMPLE 6.4 An FIR filter is given by the system function

_ |- -8
H(z) = 1+16162 + z
Determine and draw the direct, linear-phase, and cascade form structures.
a. Direct form: The difference equation is given by
y(n) = z(n) + 16.0625z(n — 4) + z(n — 8)

and the direct form structure is shown in Figure 6.13(a).
b. Linear-phase form: The difference equation can be written in the form

y(n) = [z(n) + z(n — 8)] + 16.0625z(n — 4)

and the resulting structure is shown in Figure 6.13b.
c. Cascade form: We use the following MATLAB Script.

>> b=[1,0,0,0,16+1/16,0,0,0,1]; [b0,B,A] = dir2cas(b,1)

x(n)

Z.% z4
x(n) —> > >
Y ¥ 16.0625 Y
> > »—e y(n)
(a) Direct Form
x(n) e—— : > > - > > > >—e y(n)
-1 -1 1 1
27Y 28284 A 2 Y o707 P Z Y 07071 4 Z Y -28284 4

z 'y 4.0 A z7ly 0.25 A zly 0.25 A z7ly 4.0 A

.
E Ea

Y:

(c) Cascade Form

FIGURE 6.13 FIR filter structures in Example 6./
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1.0000 2.8284 4.0000
1.0000 0.7071 0.2500
1.0000 -0.7071 0.2500
1.0000 -2.8284 4.0000

A =
1 0 0
1 0 0
1 0 0
1 0 0
The cascade form structure is shown in Figure 6.13c. O

O EXAMPLE 6.5 For the filter in Example 6.4, what would be the structure if we desire a cascade
form containing linear-phase components with real coefficients?

Solution We are interested in cascade sections that have symmetry and real coefficients.
From the properties of linear-phase FIR filters (see Chapter 7), if such a filter
has an arbitrary zero at z = r/Z0, then there must be 3 other zeros at (1/7)40,
r/ —0, and (1/r)/ — 6 to have real filter coefficients. We can now make use of
this property. First we will determine the zero locations of the given 8th-order
polynomial. Then we will group 4 zeros that satisfy this property to obtain
one (4th-order) linear-phase section. There are two such sections, which we will
connect in cascade.

MATLARB script:

>> b=[1,0,0,0,16+1/16,0,0,0,1]; broots=roots(b)

broots =
-1.4142 + 1.41423
-1.4142 - 1.41423
1.4142 + 1.4142i
1.4142 - 1.4142i
-0.3536 + 0.3536i
-0.3536 - 0.3536i
0.3536 + 0.3536i

0.3536 - 0.3536i
>> Bl=real (poly([broots (1) ,broots(2),broots(5),broots(6)]))
Bl =
1.0000 3.5355 6.2500 3.5355 1.0000
>> B2=real (poly([broots(3) ,broots(4) ,broots(7),broots(8)]))
B2 =
1.0000 -3.5355 6.2500 -3.5355 1.0000

The structure is shown in Figure 6.14. O
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x(n)

f—3.5355

yin]
FIGURE 6.14 C(Clascade of FIR linear-phase elements

6.3.7 FREQUENCY SAMPLING FORM

In this form we use the fact that the system function H (z) of an FIR
filter can be reconstructed from its samples on the unit circle. From our
discussions on the DFT in Chapter 5, we recall that these samples are
in fact the M-point DFT values {H (k), 0 < k < M — 1} of the M-point
impulse response h (n). Therefore we have

H(z)=Zh(n)]=Z[IDFT{H (k)}]

Using this procedure, we obtain [see (5.17) in Chapter 5]

H(Z)<1—z )Ak“l k — (6.12)

0

This shows that the DFT H (k), rather than the impulse response

h (n) (or the difference equation), is used in this structure. Also note that

the FIR filter described by (6.12) has a recursive form similar to an IIR

filter because (6.12) contains both poles and zeros. The resulting filter is
an FIR filter since the poles at Wl\j[k are canceled by the roots of

1—2M=p

The system function in (6.12) leads to a parallel structure, as shown in
Figure 6.15 for M = 4.

One problem with the structure in Figure 6.15 is that it requires a
complex arithmetic implementation. Since an FIR filter is almost always a
real-valued filter, it is possible to obtain an alternate realization in which
only real arithmetic is used. This realization is derived using the symmetry
properties of the DFT and the W,,* factor. Then (6.12) can be expressed

s (see Problem P6.19)

H () = {Z2|H )| Hi (2) + fff_)lﬂ“ff@} (6.13)
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H(0)
1
A wQ ‘ Y
H(1)
14 A - Y
x{n) ] w41 *—>—=o y(n)
Y Hi2) A
> > > 1 >
Y w2 “ A
H(3)
1
Z
Wf

FIGURE 6.15 Frequency sampling structure for M = 4

where L = @ for M odd, L = % — 1 for M even, and {Hj (), k=1,
..., L} are 2nd-order sections given by

cos [/H (k)] — 271 cos [ZH (k) — %}

1—2z"1cos (%) 4272

Hy, (2) = (6.14)

Note that the DFT samples H (0) and H (M/2) are real-valued and that
the third term on the right-hand side of (6.13) is absent if M is odd. Using
(6.13) and (6.14), we show a frequency sampling structure in Figure 6.16
for M = 4 containing real coefficients.

cos[ZH(1)]  2[|H(1)]|

-1
A 2cos(2m/4) Y7 1 v
\ - _ i _
g 5 2 1y cos[ZH(1) — 27/4]
1/4 . H(0)
x(n) o= U - > > 3 - >—e y(n]
-1
4 Y -\1\}2 A
T H(2)
z 1

FIGURE 6.16 Frequency sampling structure for M = 4 with real coefficients
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6.3.8 MATLAB IMPLEMENTATION

Given the impulse response h (n) or the DFT H (k), we have to determine
the coefficients in (6.13) and (6.14). The following MATLAB function,
dir2fs, converts a direct form [h (n) values] to the frequency sampling
form by directly implementing (6.13) and (6.14).

function [C,B,A] = dir2fs(h)
% Direct form to Frequency Sampling form conversion

% [C,B,A]l = dir2fs(h)

= Row vector containing gains for parallel sections

= Matrix containing numerator coefficients arranged in rows
Matrix containing denominator coefficients arranged in rows
impulse response vector of an FIR filter

==
B = Q
]

M = length(h); H = fft(h,M);
magH = abs(H); phaH = angle(H)’;
% check even or odd M

if (M == 2*xfloor(M/2))

L = M/2-1; % M is even

Al = [1,-1,0;1,1,0]; C1 = [real(H(1)),real(H(L+2))];
else

L= (MM-1)/2; % M is odd

Al = [1,-1,0]; C1 = [real(H(1))];
end
k = [1:L]7;

% initialize B and A arrays

B = zeros(L,2); A = ones(L,3);

% compute denominator coefficients
A(1:L,2) = -2%cos(2xpixk/M); A = [A;A1];
% compute numerator coefficients
B(1:L,1) = cos(phaH(2:L+1));

B(1:L,2) = -cos(phaH(2:L+1)-(2xpixk/M));
% compute gain coefficients

C = [2*magH(2:L+1),C1]’;

In this function, the impulse response values are supplied through the
h array. After conversion, the C array contains the gain values for each
parallel section. The gain values for the 2nd-order parallel sections are
given first, followed by H (0) and H (M/2) (if M is even). The B matrix
contains the numerator coeflicients, which are arranged in length-2 row
vectors for each 2nd-order section. The A matrix contains the denominator
coefficients, which are arranged in length-3 row vectors for the 2nd-order
sections corresponding to those in B, followed by the coefficients for the
1st-order sections.
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A practical problem with the structure in Figure 6.16 is that it has
poles on the unit circle, which makes this filter critically unstable. If the
filter is not excited by one of the pole frequencies, then the output is
bounded. We can avoid this problem by sampling H (z) on a circle |z| = r,
where the radius r is very close to 1 but is less than 1 (e.g., » = 0.99),
which results in

H(k)=H (reﬂ”k/M)
(6.15)

Now approximating H (rejzﬂk/M) ~H (e-jQﬂk/M) for r ~ 1, we can obtain
a stable structure similar to the one in Figure 6.16 containing real values.
This is explored in Problem P6.20.

9

O EXAMPLE 6.6 Let h (n) = :{1,2,3,2,1}. Determine and draw the frequency sampling form.
T

Solution MATLAB script:

>> h = [1,2,3,2,11/9; [C,B,A] = dir2fs(h)

C =
0.5818
0.0849
1.0000
B =
-0.8090 0.8090
0.3090 -0.3090
A =

1.0000 -0.6180 1.0000
1.0000 1.6180 1.0000
1.0000 -1.0000 0

Since M =5 is odd, there is only one lst-order section. Hence

1—27° —0.809 + 0.809z*
H(z) = 581
(2) 5 05818 0 6181 + 22

0.309 — 0.3092~! 1

0.0848
+ 1+1618271+272  1—21

The frequency-sampling form is shown in Figure 6.17. O
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FIGURE 6.17 Frequency sampling structure in Example 6.6

O EXAMPLE 6.7 The frequency samples of a 32-point linear-phase FIR filter are given by

1, k=0,1,2
|H (k)] =405, k=3
0, k=4,5,...,15

Determine its frequency sampling form, and compare its computational com-
plexity with the linear-phase form.

Solution In this example since the samples of the DFT H (k) are given, we could use
(6.13) and (6.14) directly to determine the structure. However, we will use the
dir2fs function for which we will have to determine the impulse response h (n).
Using the symmetry property and the linear-phase constraint, we assemble the
DFT H (k) as

H (k) = |H (k)PP k=0,1,...,31
|H (k)| = |H(32—k)|, k=1,2,...,31; H(0)=1
31 27

LH(k) =~ ook=—LH(32-k), k=0,1,...31

Now the IDFT of H (k) will result in the desired impulse response.

MATLARB script:

>> M = 32; alpha = (M-1)/2;

>> maghk = [1,1,1,0.5,zeros(1,25),0.5,1,1];

>> k1 = 0:15; k2 = 16:M-1;

>> angHk = [-alpha*(2#pi)/M*k1, alpha*(2%pi)/M*(M-k2)];

>> H = magHk.*exp(j*angHk); h = real(ifft(H,M)); [C,B,A] = dir2fs(h)
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C =
2.0000
2.0000
1.0000
0.0000
0.0000
0.0000
0.0000
0
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
0
B =
-0.9952 0.9952
0.9808 -0.9808
-0.9569 0.9569
-0.8944 0.3162
0.9794 -0.7121
0.8265 0.2038
-0.6754 0.8551
1.0000 0.0000
0.6866 -0.5792
0.5191 0.9883
-0.4430 0.4993
-0.8944 -0.3162
-0.2766 0.3039
0.9343 0.9996
-0.9077 -0.8084
A =
1.0000 -1.9616 1.0000
1.0000 -1.8478 1.0000
1.0000 -1.6629 1.0000
1.0000 -1.4142 1.0000
1.0000 -1.1111 1.0000
1.0000 -0.7654 1.0000
1.0000 -0.3902 1.0000
1.0000 0.0000 1.0000
1.0000 0.3902 1.0000
1.0000 0.7654 1.0000
1.0000 1.1111 1.0000
1.0000 1.4142 1.0000
1.0000 1.6629 1.0000
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1.0000 1.8478 1.0000
1.0000 1.9616 1.0000
1.0000 -1.0000 0
1.0000 1.0000 0

Note that only 4 gain coefficients are nonzero. Hence the frequency sampling
form is

—0.9952 + 0.9952z ! 0.9808 — 0.9808z!
C1—27% | 7119616271 + 22 1—1.8478271 + 22
32 —0.9569 + 0.95692 ! 1
1—-1.66292z—1 + 22 1—2"1

To determine the computational complexity, note that since H (0) = 1, the 1st-
order section requires no multiplication, whereas the three 2nd-order sections
require 3 multiplications each for a total of 9 multiplications per output sample.
The total number of additions is 13. To implement the linear-phase structure
would require 16 multiplications and 31 additions per output sample. Therefore
the frequency sampling structure of this FIR filter is more efficient than the
linear-phase structure. O

6.4 LATTICE FILTER STRUCTURES
i

The lattice filter is extensively used in digital speech processing and in
the implementation of adaptive filters. It is a preferred form of realization
over other FIR or IIR filter structures because in speech analysis and in
speech synthesis the small number of coefficients allows a large number of
formants to be modeled in real time. The all-zero lattice is the FIR filter
representation of the lattice filter, while the lattice ladder is the IIR filter
representation.

6.4.1 ALL-ZERO LATTICE FILTERS

An FIR filter of length M (or order M — 1) has a lattice structure with
M —1 stages as shown in Figure 6.18. Each stage of the filter has an input
and output that are related by the order-recursive equations [23]:

fm(m) = frn—1(n) + Kppgm—1(n—1), m=1,2,... M —1

(6.16)
gm(n) = K fm—1(n) + gm-1(n—1), m=1,2,... .M —1

where the parameters K,,, m = 1,2,...,M — 1, called the reflection
coefficients, are the lattice filter coefficients. If the initial values of f,,(n)
and g¢,,(m) are both the scaled value (scaled by Kj) of the filter input
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FIGURE 6.18 All-zero lattice filter

x(n), then the output of the (M — 1) stage lattice filter corresponds to
the output of an (M — 1) order FIR filter; that is,

fo(n) = go(n) = Kox(n)
y(n) = fa-1(n)

If the FIR filter is given by the direct form

M—-1 M—-1 b
H(z) = Z bmz" ™ = by <1 + Z b—mzm> (6.18)
m=0 m=1 0

and if we denote the polynomial Ap;_1(2) by

(6.17)

M-1
Ap-1(2) = (1 + Z aMl(m)Z_m> ; (6.19)

m=1

apy—1(m)=—,m=1,.... M -1

then the lattice filter coefficients {K,,} can be obtained by the following
recursive algorithm [23]:

Ky = by
Kyo1=ap—1 (M —1)
_ ,—m —1). _ _
Im (2) = 27™Ap (271) m=M-1,...,1 (6.20)
A (2) — K dm (2)
Apm—1(2) = el , m=M-—1,...,1
Ky = ap(m), m=M-2,...,1

Note that this algorithm will fail if |K,,| =1 for any m =1,..., M — 1.
Clearly, this condition is satisfied by linear-phase FIR filters since

bar—1
bo

=1

bo = g1l = 1| = ars-2 (37 = 1) = |
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Therefore, linear-phase FIR filters cannot be implemented using lattice
structures.

6.4.2 MATLAB IMPLEMENTATION

Given the coefficients {b, } of the direct form, we can obtain the lattice fil-
ter coefficients { K, } using (6.20). This is done by the following MATLAB
function dir2latc. Note that the equation to compute J,,(z) implies that
the polynomial J,,(z) is a £1iplr operation on the A,,(z) polynomial.

function [K] = dir2latc(b)
% FIR Direct form to All-Zero Lattice form Conversion

% [K] = dir2latc(b)
% K = Lattice filter coefficients (reflection coefficients)
% b = FIR direct form coefficients (impulse response)

M = length(b); K = zeros(1,M); bl = b(1);

if bl ==

error (’b(1) is equal to zero’)
end

K(1) = bl; A = b/bl;

for m=M:-1:2

K(m) = A(m); J = fliplr(A);
A= (A-K(m)*J)/(1-K(m)*K(m)); A = A(1:m-1);
end

The lattice filter is implemented using (6.16) and (6.17), which is done by
a latcfilt function, as shown here.

function [y] = latcfilt(K,x)
% LATTICE form realization of FIR filters
% -

% y = latcfilt(X,x)

% y = output sequence

% K = LATTICE filter (reflection) coefficient array
% x = input sequence

K(1)*x;

Nx = length(x)-1; x =
= K(2:M+1); fg = [x; [0 x(1:Nx)]];

M = length(X)-1; K
for m = 1:M
fg = [1,K(m);K(m),1]*fg;
fg(2,:) = [0 £g(2,1:Nx)];

y = fg(1,:);
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The equations (6.20) can also be used to determine the direct, form
coefficients {b,, } from the lattice filter coefficients { K, } using a recursive
procedure [22]:

Ao(2) = Jo(2) =1

m(Z) ()+sz Jm—l(z)a m:172a"'7M_1

(6.21)
In(z) = 27" A (271), m=1,2,...,M—1
by = Koapr—1(m), m=0,1,...,.M -1

The following MATLAB function latc2dir implements (6.21). Note
that the product K,,27'J,,—1 (2) is obtained by convolving the 2 corre-
sponding arrays, whereas the polynomial J,,(z) is obtained by using a
fliplr operation on the A,,(z) polynomial.

function [b] = latc2dir(K)
% All-Zero Lattice form to FIR Direct form Conversion
7
% [b] = latc2dir(X)
% b = FIR direct form coefficients (impulse response)
% K = Lattice filter coefficients (reflection coefficients)
h
M = length(K); J =1; A = 1;
for m=2:1:M
= [A,0]+conv([0,K(m)],J); J = £fliplr(A);
end
b=A%*K (1) ;

O EXAMPLE 6.8 An FIR filter is given by the difference equation

y(n) = 26(n) + oa(n — 1) + Jxln —2) + Za(n - 3)

Determine its lattice form.

Solution MATLAB script:

>> b=[2, 13/12, 5/4, 2/3]; K=dir2latc(b)
K =
2.0000 0.2500 0.5000 0.3333
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1 1 1

L
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x(n) e—>» » >
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¥
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]
=
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x{n}.—;—

(b)
FIGURE 6.19 FIR filter structures in Example 6.8: (a) direct form (b) lattice
form
Hence
1 1 1
Ko=2 Ki=-, K==, Kg=~
0 » Ki=7, Ko=35, K3 =3

The direct form and the lattice form structures are shown in Figure 6.19. To
check that our lattice structure is correct, let us compute the impulse response
of the filter using both forms.

>> [x,n] = impseq(0,0,3]; format long hdirect=filter(b,1,delta)
hdirect =
2.00000000000000 1.08333333333333 1.25000000000000 0.66666666666667
>> hlattice=latcfilt(K,delta)
hlattice =
2.00000000000000 1.08333333333333 1.25000000000000 0.66666666666667

O

6.4.3 ALL-POLE LATTICE FILTERS

A lattice structure for an IIR filter is restricted to an all-pole system
function. It can be developed from an FIR lattice structure. Let an all-
pole system function be given by

H(z) = (6.22)

which from (6.19) is equal to H(z) = 1/An(z). Clearly, it is an inverse sys-
tem to the FIR lattice of Figure 6.18 (except for factor by). This IIR filter
of order N has a lattice structure with IV stages, as shown in Figure 6.20.
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x(n) = fyln) fry_1(n) fo(n) fyln) foln)

=Ky -Ka ' '
Knn Ky
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FIGURE 6.20 All-pole lattice filter

Each stage of the filter has an input and output that are related by the
order-recursive equations [23]:

(6.23)

(n)
fm—1(n) = fm(n) = Kpgm—1(n—1), m=N,N-—1,...,1
(n) = K fim-1(n) + gm-1(n—1), m=N, N —1,...,1
)

= fo(n) = go(n)

where the parameters K,,, m =1,2,..., M — 1, are the reflection coeffi-
cients of the all-pole lattice and are obtained from (6.20) except for Ky,
which is equal to 1.

6.4.4 MATLAB IMPLEMENTATION

Since the IIR lattice coefficients are derived from the same (6.20) proce-
dure used for an FIR lattice filter, we can use the dir2latc function in
MATLAB. Care must be taken to ignore the Ky coefficient in the K array.
Similarly, the latc2dir function can be used to convert the lattice { K, }
coefficients into the direct form {ay(m)}, provided that Ky = 1 is used
as the first element of the K array. The implementation of an IIR lattice
is given by (6.23), and we will discuss it in the next section.

O EXAMPLE 6.9 Consider an all-pole IIR filter given by
1

H(z) =
) 14827145224 1273

Determine its lattice structure.

Solution MATLAB script:

>> a=[1, 13/24, 5/8, 1/3]; K=dir2latc(a)
K =
1.0000 0.2500 0.5000 0.3333
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1

>y
-
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—»——o y(n]
(b)
FIGURE 6.21 IIR filter structures in Example 6.9: (a) direct form (b) lattice
form
Hence

1 1 1
[(1217 K2=§, and K3=§

The direct form and the lattice form structures of this IIR filter are shown in
Figure 6.21. ([l

6.4.5 LATTICE-LADDER FILTERS

A general IIR filter containing both poles and zeros can be realized as
a lattice-type structure by using an all-pole lattice as the basic building
block. Consider an IIR filter with system function

M
> bar(k)zF
H(z) = =0 = iM((;) (6.24)
1+ S an(k)z—k Y
k=1

where, without loss of generality, we assume that N > M. A lattice-
type structure can be constructed by first realizing an all-pole lattice
with coefficients K,,, 1 < m < N for the denominator of (6.24), and
then adding a ladder part by taking the output as a weighted linear
combination of {g,,(n)}, as shown in Figure 6.22 for M = N. The result
is a pole-zero IIR filter that has the lattice-ladder structure. Its output is
given by

M
m=0
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FIGURE 6.22 Lattice-ladder structure for realizing a pole-zero IIR filter

where {C,} are called the ladder coefficients that determine the zeros of
the system function H(z). It can be shown [23] that {C,,} are given by

Bu(2) =Y Codim(2) (6.26)

where Jp,(2) is the polynomial in (6.20). From (6.26) one can obtain a
recursive relation

B (2) = Bi—1(2) + Cndi(2); m=1,2,...,. M

or equivalently,

M
Con=bm+ Y Ciai(i—m); m=M M—1,...,0 (6.27)
1=m-+1

from the definitions of B,,(z) and A, (2).

6.4.6 MATLAB IMPLEMENTATION

To obtain a lattice-ladder structure for a general rational IIR filter, we
can first obtain the lattice coefficients {K,,} from Ay(z) using the re-
cursion (6.20). Then we can solve (6.27) recursively for the ladder coeffi-
cients {C), } to realize the numerator By (z). This is done in the following
MATLAB function dir2ladr. It can also be used to determine the all-pole
lattice parameters when the array b is set to b=[1].

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materialy affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions requireit.



Lattice Filter Structures 247

function [K,C] = dir2ladr(b,a)
% IIR Direct form to pole-zero Lattice/Ladder form Conversion

-
% [K,C] = dir2ladr(b,a)

% K = Lattice coefficients (reflection coefficients), [K1,...,KN]
% C = Ladder Coefficients, [CO,...,CN]

% b = Numerator polynomial coefficients (deg <= Num deg)

% a = Denominator polynomial coefficients

al = a(1); a = a/al; b = b/ail;
M = length(b); N = length(a);
if M > N
error (’ *x*x length of b must be <= length of a *x*’)
end
b = [b, zeros(1,N-M)]; K = zeros(1,N-1);
A = zeros(N-1,N-1); C = b;
for m = N-1:-1:1
A(m,1:m) = -a(2:m+1)*C(m+1) ;
K(m) = a(m+1); J = fliplr(a);
a = (a-K(m)*J)/(1-K(m)*K(m)); a = a(l:m);
C(m) = b(m) + sum(diag(A(m:N-1,1:N-m)));
end

Note: To use this function, N > M. If M > N, the numerator Ay(2)
should be divided into the denominator Bjps(z) using the deconv func-
tion to obtain a proper rational part and a polynomial part. The proper
rational part can be implemented using a lattice-ladder structure, while
the polynomial part is implemented using a direct structure.

To convert a lattice-ladder form into a direct form, we first use the
recursive procedure in (6.21) on {K,,} coefficients to determine {an(k)}
and then solve (6.27) recursively to obtain {bys(k)}. This is done in the
following MATLAB function ladr2dir.

function [b,a] = ladr2dir(K,C)
% Lattice/Ladder form to IIR Direct form Conversion
v - —
% [b,a]l = ladr2dir(X,C)
b = numerator polynomial coefficients
% a = denominator polymonial coefficients
K
(¢

Lattice coefficients (reflection coefficients)
Ladder coefficients

N = length(K); M = length(C);
[C, zeros(1,N-M+1)];

Q
]
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J=1; a=1; A = zeros(N,N);
for m=1:1:N

a = [a,0]+conv([0,K(m)],J);

A(m,1:m) = -a(2:m+1); J = fliplr(a);
end
b(N+1) = C(N+1);
for m = N:-1:1

A(m,1:m) = A(m,1:m)*C(m+1);

b(m) = C(m) - sum(diag(A(m:N,1:N-m+1)));
end

The lattice-ladder filter is implemented using (6.23) and (6.25).
This is done in the following MATLAB function ladrfilt. It should
be noted that, due to the recursive nature of this implementation along
with the feedback loops, this MATLAB function is neither an elegant
nor an efficient method of implementation. It is not possible to exploit
MATLARB’s inherent parallel processing capabilities in implementing this
lattice-ladder structure.

function [y] = ladrfilt(K,C,x)

% LATTICE/LADDER form realization of IIR filters
% = =
% [yl = ladrfilt(X,C,x)

% y = output sequence

% K = LATTICE (reflection) coefficient array
% C = LADDER coefficient array

% x = input sequence

yA

Nx = length(x); y = zeros(1,Nx);
N = length(C); f = zeros(N,Nx); g = zeros(N,Nx+1);
f(N,:) = x;
for n = 2:1:Nx+1
for m = N:-1:2
f(m-1,n-1) = f(m,n-1) - K(m-1)*g(m-1,n-1);
g(m,n) = K(m-1)*f(m-1,n-1) + g(m-1,n-1);
end
g(1,n) = £(1,n-1);
end
y = C*g(:,2:Nx+1);

0 EXAMPLE 6.10 Convert the following pole-zero IIR filter into a lattice-ladder structure.

_ 14227 42,724,273
Ol Bl 224 1,3

H(z)
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Solution MATLAB script:

>> b = [1,2,2,1] a = [1, 13/24, 5/8, 1/3]; [K,C] = dir2ladrc(b)

K =
0.2500 0.5000 0.3333
C =
-0.2695 0.8281 1.4583 1.0000
Hence
1 1 1
Ki==, Ko= =, K3=~;
1 4’ 2 2’ 3 37
and
Co = —0.2695, Ch =0.8281, Cy; =1.4583, C3 =1
x(n)
xin) . yin) -3 —12 —1/4
) 1
i o g 112 "
2= 2=1 2=
-8 17 2
E -1 r 1.0 1.4583 ¥ 0.8281 —0.2695
-yz 17 1 A
>—e yinl
(a) (b}

FIGURE 6.23 IIR filter structures in Example 6.10: (a) direct form (b) lattice-
ladder form

The resulting direct form and the lattice-ladder form structures are shown in
Figure 6.23. To check that our lattice-ladder structure is correct, let us compute
the first 8 samples of its impulse response using both forms.

>> [x,n]=impseq(0,0,7) format long hdirect = filter(b,a,x)
hdirect =
Columns 1 through 4
1.00000000000000 1.45833333333333 0.58506944444444 -0.56170428240741
Columns 5 through 8
-0.54752302758488 0.45261700163162 0.28426911049255 -0.25435705167494
>> hladder = ladrfilt(K,C,x)
hladder =
Columns 1 through 4
1.00000000000000 1.45833333333333 0.58506944444444 -0.56170428240741
Columns 5 through 8
-0.54752302758488 0.45261700163162 0.28426911049255 -0.25435705167494

O
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Finally, we note that the SP toolbox also provides functions similar to
the ones discussed in this section—the complementary functions, tf2latc
and latc2tf, compute all-pole lattice, all-zero lattice, and lattice-ladder
structure coefficients, and vice versa. Similarly, the function latcfilt
(the same name as the book function) implements the all-zero lattice
structure. The SP toolbox does not provide a function to implement the
lattice-ladder structure.

6.5 OVERVIEW OF FINITE-PRECISION NUMERICAL EFFECTS
i

Until now we have considered digital filter designs and implementations
in which both the filter coeflicients and the filter operations such as addi-
tions and multiplications were expressed using infinite-precision numbers.
When discrete-time systems are implemented in hardware or in software,
all parameters and arithmetic operations are implemented using finite-
precision numbers and hence their effect is unavoidable.

Consider a typical digital filter implemented as a direct-form II struc-
ture, which is shown in Figure 6.24a. When finite-precision representation
is used in its implementation, there are three possible considerations that
affect the overall quality of its output. We have to

1. quantize filter coefficients, {ay, by}, to obtain their finite word-length
representations, {ag, l;k},

2. quantize the input sequence, z(n) to obtain &(n), and

3. consider all internal arithmetic that must be converted to their next
best representations.

Thus, the output, y(n), is also a quantized value g(n). This gives us a new
filter realization, H(z), which is shown in Figure 6.24b. We hope that this

x(n)—> H(Ez) > YM () —> H@) |—¥(n)
X(n) . bo Sy X() . by Y

) yz! 4 Y vzl \

3 b & b1
\ "Z’l A S VZ’l ~ \

a D2 3 02
) yz! A L vz 1. \

a3 D3 a3 O3

(@) (b)

FIGURE 6.24 Direct-form II digital filter implementation: (a) Infinite precision,
(b) Finite precision
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new filter H(z) and its output §(n) are as close as possible to the original
filter H(z) and the original output y(n).

Since the quantization operation is a nonlinear operation, the overall
analysis that takes into account all three effects described above is very
difficult and tedious. Therefore, we will study each of these effects sepa-
rately as though it were the only one acting at the time. This makes the
analysis easier and the results more interpretable.

We begin by discussing the number representation in a computer—
more accurately, a central processing unit (CPU). This leads to the pro-
cess of number quantization and the resulting error characterization. We
then analyze the effects of filter coefficient quantization on digital filter
frequency responses. The effects of multiplication and addition quantiza-
tion (collectively known as arithmetic round-off errors) on filter output
are discussed in Chapter 10.

6.6 REPRESENTATION OF NUMBERS
i

In computers, numbers (real-valued or complex-valued, integers or frac-
tions) are represented using binary digits (bits), which take the value of
either a 0 or a 1. The finite word-length arithmetic needed for processing
these numbers is implemented using two different approaches, depending
on the ease of implementation and the accuracy as well as dynamic range
needed in processing. The fized-point arithmetic is easy to implement but
has only a fixed dynamic range and accuracy (i.e., very large numbers or
very small numbers). The floating-point arithmetic, on the other hand, has
a wide dynamic range and a variable accuracy (relative to the magnitude
of a number) but is more complicated to implement and analyze.

Since a computer can operate only on a binary variable (e.g., a 1 or
a 0), positive numbers can straightforwardly be represented using binary
numbers. The problem arises as to how to represent the negative num-
bers. There are three different formats used in each of these arithmetics:
sign-magnitude format, one’s-complement format, and two’s-complement
format. In discussing and analyzing these representations, we will mostly
consider a binary number system containing bits. However, this discussion
and analysis is also valid for any radix numbering system—for example,
the hexadecimal, octal, or decimal system.

In the following discussion, we will first begin with fixed-point signed
integer arithmetic. A B-bit binary representation of an integer x is given
by!

r=bp 1bp_o...bg=bp 1 x2P7 4 bp o x2B872 ... 4y x2° (6.28)

IHere the letter b is used to represent a binary bit. It is also used for filter coefficients
{b}. Its use in the text should be clear from the context.
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where each bit b; represents either a 0 or a 1. This representation will
help us to understand the advantages and disadvantages of each signed
format and to develop simple MATLAB functions. We will then extend
these concepts to fractional real numbers for both fixed-point and floating-
point arithmetic.

6.6.1 FIXED-POINT SIGNED INTEGER ARITHMETIC

In this arithmetic, positive numbers are coded using their binary repre-
sentation. For example, using 3 bits, we can represent numbers from 0 to
7 as

0 1 2 3 4 5 6 7
B s ettt SRR

000 001 010 011 100 101 110 111

Thus, with 8 bits the numbers represented can be 0 to 255, with 10 bits
we can represent the numbers from 0 to 1023, and with 16 bits the range
covered is 0 to 65535. For negative numbers, the following three formats
are used: sign-magnitude, one’s-complement, and two’s-complement.

Sign-magnitude format In this format, positive numbers are repre-
sented using bits as before. However, the leftmost bit (also known as the
most-significant bit or MSB) is used as the sign bit (0 is 4+, and 1 is —),
and the remaining bits hold the absolute magnitude of the number as
shown here:

Sign Bit
-+ Absolute Magnitude
ot -— -——+
[ |
ot -—+

This system has thus two different codes for 0, one for the positive 0, the
other one for the negative 0. For example, using 3 bits, we can represent
numbers from —3 to 3 as

-3 -2 -1 -0 0 1 2 3
s e R R e
111 110 101 100 000 001 010 011

Thus, 8 bits cover the interval [—127, 4+127], while 16 bits cover [—32, 767,
+32,767]. If we use B bits in the sign-magnitude format, then we can
represent integers from —(28-1 — 1) to +(28-1 — 1) only.

This format has two drawbacks. First, there are two representations
for 0. Second, the arithmetic using sign-magnitude format requires one
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rule to compute addition, another rule to compute subtraction, and a
way to compare two magnitudes to determine their relative value before
subtraction.

MATLAB Implementation MATLAB is a 64-bit floating-point com-
putation engine that provides results in decimal numbers. Therefore,
fixed-point binary operations must be simulated in MATLAB. It provides
a function, dec2bin, to convert a positive decimal integer into a B-bit
representation, which is a symbol (or a code) and not a number. Hence
it cannot be used in computation. Similarly, the function bin2dec con-
verts a B-bit binary character code into a decimal integer. For example,
dec2bin(3,3) gives 011 and bin2dec(’111’) results in 7. To obtain a
sign-magnitude format, a sign bit must be prefixed. Similarly, to convert a
sign-magnitude format, the leading bit must be used to impart a positive
or negative value. These functions are explored in Problem P9.1.

One’s-complement format In this format, the negation (or comple-
mentation) of an integer x is obtained by complementing every bit (i.e., a
0 is replaced by 1 and a 1 by 0) in the binary representation of z. Suppose
the B-bit binary representation of = is bg_1 bg_o --- bg; then the B-bit
one’s-complement, T, of x is given by

VN -
Z=bp_1bp_2--- by
where each bit b; is a complement of bit b;. Clearly then
r+z=11...1=28-1 (6.29)

The MSB of the representation once again represents the sign bit,
because the positive integer has the MSB of 0 so that its negation (or a
negative integer) has the MSB of 1. The remaining bits represent either
the number z (if positive) or its one’s-complement (if negative). Thus,
using (6.29) the one’s-complement format representation? is given by

oo A z, ©20 ([ x>0 [, z>0 (6.30)
W= |z, 2 <0 2B 1 —Jz[, 2 <0 (2B -142,2<0

Clearly, if B bits are available, then we can represent only integers from
(—2B7141) to (42871 1), which is similar to the sign-magnitude format.

2The one’s-complement format refers to the representation of positive and negative
numbers, whereas the one’s-complement of a number refers to the negation of that
number.
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For example, using 3 bits, we can represent numbers from —3 to 3 as

-3 -2 -1 -0 0 1 2 3

—_—— + + + + + + ——

100 101 110 111 000 001 010 011

which is a different bit arrangement for negative numbers compared to
the sign-magnitude format.

The advantage of this format is that subtraction can be achieved by
adding the complement, which is very easy to obtain by simply comple-
menting a number’s bits. However, there are many drawbacks. There are
still two different codes for 0. The addition is a bit tricky to implement,
and overflow management requires addition of the overflow bit to the least
significant bit (or 2°).

MATLAB Implementation The ls-complement of a positive in-
teger = using B bits can be obtained by using the built-in function
bitcmp(x,B), which complements the number’s bits. The result is a dec-
imal number between 0 and 28 — 1. As before, the dec2bin can be used
to obtain the binary code. Using (6.30), we can develop the MATLAB
function, OnesComplement, which obtains the one’s-complement format
representation. It uses the sign of a number to determine when to use
one’s-complement and can use scalar as well as vector values. The result
is a decimal equivalent of the representation.

function y = OnesComplement (x,B)

% y = OnesComplement (x,B)

/R

% Decimal equivalent of

% Sign-Magnitude format integer to b-bit Ones’-Complement format conversion

% x: integer between -27(b-1) < x < 27(b-1) (sign-magnitude)
% y: integer between 0 <= y <= 2°b-1  (1’s-complement)

if any((x <= -27°(B-1) | (x >= 27(B-1))))

error (’Numbers must satisfy -27(B-1) < x < 27(B-1)’)
end
s = sign(x); % sign of x (-1 if x<0, O if x=0, 1 if x>0)
sb = (s < 0); % sign-bit (0 if x>=0, 1 if x<0));
y = (1-sb) .*x + sb.*bitcmp(abs(x),B);

0 EXAMPLE 6.11 Using the function OnesComplement, obtain one’s-complement format represen-
tation of integers from —7 to 7 using 4 bits.
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Solution MATLAB script:

>> x = =7:7

>> y = OnesComplement (x,4)

y =
8 9 10 11 12 13 14 0 1 2 3 4 5 6 7

Note that the number 15 is missing since we do not have —0 in our original
array. O

Two’s-complement format The disadvantage of having two codes for
the number 0 is eliminated in this format. Positive numbers are coded as
usual. The B-bit two’s-complement, Z, of a positive integer x is given by

F=z+1=28—-2 or z4+5=2"8 (6.31)

where the second equality is obtained from (6.30). Once again, the
MSB of the representation provides the sign bit. Thus, using (6.31) the
two’s-complement format representation® is given by

_Jz, x>0 =, z>0_ =, x>0 (6.32)
ATz, <0 (28 —|a],2<0 \2B+a, 2<0 '

Thus, in B-bit two’s-complement format negative numbers are obtained
by adding 27 to them. Clearly, if B bits are available, then we can repre-
sent 28 integers from (—2871) to (+28-1 —1). For example, using 3 bits,
we can represent numbers from —4 to 3 as

-4 -3 -2 -1 0 1 2 3
B Bt S B O St
100 101 110 111 000 001 010 011

This format, by shifting to the right (e.g., by incrementing) the code
of the negative numbers, straightforwardly removes the problem of having
2 codes for 0 and gives access to an additional negative number at the
left of the line. Thus, 4 bits go from —8 to +7, 8 bits cover the interval
[—-127,+127] and 16 bits cover [—32768, +32767].

3 Again, the two’s-complement format refers to the representation of positive and neg-
ative numbers, whereas the two’s-complement of a number refers to the negation of
that number.
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MATLAB Implementation Using (6.32), we can develop the
MATLAB function, TwosComplement, which obtains the two’s-complement
format representation. We can use the bitcmp function and then add one
to the result to obtain the two’s-complement. However, we will use the
last equality in (6.32) to obtain the two’s-complement since this approach
will also be useful for fractional numbers. The function can use scalar
as well as vector values. The result is a decimal equivalent of the two’s-
complement representation. As before, the dec2bin can be used to obtain
the binary code.

function y = TwosComplement (x,b)
% y = TwosComplement (x,b)
o/ R
% Decimal equivalent of
% Sign-Magnitude format integer to b-bit Ones’-Complement format conversion
A
% x: integer between -27(b-1) <= x < 27(b-1) (sign-magnitude)
A y: integer between 0 <=y <= 2°b-1  (2’s-complement)
if any((x < -27(b-1) | (x >= 27(b-1))))
error (’Numbers must satisfy -27(b-1) <= x < 27(b-1)’)
end
s = sign(x); % sign of x (-1 if x<0, 0 if x=0, 1 if x>0)
sb = (s < 0); % sign-bit (0 if x>=0, 1 if x<0));
y = (1-sb) .*x + sb.*x(2°b+x); % or y = (1-sb).*x + sb.*(bitcmp(abs(x),b)+1);

0 EXAMPLE 6.12 Using the function TwosComplement, obtain the two’s-complement format rep-
resentation of integers from —8 to 7 using 4 bits.