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2.1 Definition of Simple Regression Model

� Applied econometric analysis often begins with 2 variables y and x. 
We are interested in “studying how y varies with changes in x”.

E.g., x is years of education, y is hourly wage.

x is number of police officers, y is a community crime rate.

� In the simple linear regression model:

� (2.1)

y is called the dependent variable, the explained variable, or the 
regressand. 

x is called the independent variable, the explanatory variable, or the 
regressor.

u, called error term or disturbance, represents factors other than x 
that affect y. u stands for “unobserved”.
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2.1 Definition of Simple Regression Model

� If the other factors in u are held fixed,           , then x has a linear 
effect on y: 

� is the slope parameter. This is of primary interest in applied 
economics.

� One-unit change in x has the same effect on y, regardless of the 
initial value of x. � Unrealistic. 

� E.g., wage-education example, we might want to allow for 
increasing returns.
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2.1 Definition of Simple Regression Model

� An assumption: the average value of u in the population is zero.

E(u) = 0                                          (2.5)

This assumption is not restrictive since we can always use      to 
normalize E(u) to 0.

� Because u and x are random variables, we can define conditional 
distribution of u given any value of x.

� Crucial assumption: average value of u does not depend on x.

E(u|x) = E(u)                                     (2.6)

� (2.5) + (2.6) � the zero conditional mean assumption.

� This implies    E(y|x) =
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2.1 Definition of Simple Regression Model

� Population regression function (PRF): E(y|x) is a linear function of x. 
For any value of x, the distribution of y is centered about E(y|x).
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2.2 Ordinary Least Squares

� How to estimate population parameters      and     from a sample?

� Let {(xi,yi): i = 1, 2, …, n} denote a random sample of size n from the 
population.

� For each observation in this sample, it will be the case that
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2.2 Ordinary Least Squares

� PRF, sample data points and the associated error terms:
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2.2 Ordinary Least Squares

� To derive the OLS estimates, we need to realize that our main 
assumption of E(u|x) = E(u) = 0 also implies that 

Cov(x,u) = E(xu) = 0                              (2.11)

Why? Cov(x,u) = E(xu) – E(x)E(u) = Ex[E(xu|x)] = Ex[xE(u|x)] = 0.

� We can write 2 restrictions (2.5) and (2.11) in terms of x, y,     and    

(2.12)

(2.13)

� (2.12) and (2.13) are 2 moment restrictions with 2 unknown 
parameters. � They can be used to obtain good estimators of      
and     . 
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2.2 Ordinary Least Squares

� Method of moments approach to estimation implies imposing the 
population moment restrictions on the sample moments.

� Given a sample, we choose estimates      and     to solve the 
sample versions:

(2.14)

(2.15)

� Given the properties of summation, (2.14) can be rewritten as

(2.16)

or                                                                                               (2.17)
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2.2 Ordinary Least Squares

� Drop 1/n in (2.15) and plug (2.17) into (2.15):

� Provided that                                                                             (2.18)

the estimated slope is                                                                    (2.19)
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2.2 Ordinary Least Squares

� Summary of OLS slope estimate:

- Slope estimate is the sample covariance between x and y divided 
by the sample variance of x.

- If x and y are positively correlated, the slope will be positive.

- If x and y are negatively correlated, the slope will be negative.

-Only need x to vary in the sample.

� and     given in (2.17) and (2.19) are called the ordinary least 
squares (OLS) estimates of     and     .
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2.2 Ordinary Least Squares

� To justify this name, for any      and     , define a fitted value for y 
given x = xi:                                                                               (2.20)

� The residual for observation i is the difference between the actual yi

and its fitted value:

� Intuitively, OLS is fitting a line through the sample points such that 
the sum of squared residuals is as small as possible � term 
“ordinary least squares”.

� Formal minimization problem:

� (2.22)
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2.2 Ordinary Least Squares

� Sample regression line, sample data points and residuals:
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2.2 Ordinary Least Squares

� To solve (2.22), we obtain 2 first order conditions, which are the 
same as (2.14) and (2.15), multiplied by n.

� Once we have determined the OLS      and     , we have the OLS 
regression line:                                                                         (2.23)

� (2.23) is also called the sample regression function (SRF) because 
it is the estimated version of the population regression function 
(PRF)                              .

� Remember that PRF is fixed but unknown.

Different samples generate different SRFs.
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2.2 Ordinary Least Squares

� Slope estimate      is of primary interest. It tells us the amount by 
which     changes when x increases by 1 unit.

� E.g., we study the relationship between firm performance and CEO 
compensation.

salary =            roe + u

salary = CEO’s annual salary in thousands of dollars,

roe = average return (%) on the firm’s equity for previous 3 years.

� Because a higher roe is good for the firm, we think      > 0.

� Data set CEOSAL1 contains information on 209 CEOs in 1990.

� OLS regression line:   salâry = 963.191 + 18.501roe (2.26)
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2.2 Ordinary Least Squares

� E.g., for the population of the workforce in 1976, let

y = wage, $ per hour,

x = educ, years of schooling. 

� Using data in WAGE1 with 526 observations, we obtain the OLS 
regression line:

wâge = -0.90 + 0.54educ                       (2.27)

� Implication of the intercept? Why?

Only 18 people in the sample have less than 8 years of education. 
� the regression line does poorly at very low levels.

� Implication of the slope?
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2.3 Mechanics of OLS

Fitted Values and Residuals

� Given      and     , we can obtain the fitted value     for each 
observation. Each      is on the OLS regression line.

� OLS residual associated with observation i,    , is the difference 
between yi and its fitted value.

If     is positive, the line underpredicts yi.

If     is negative, the line overpredicts yi.

� In most cases, every           , none of the data points lie on the OLS 
line.
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2.3 Mechanics of OLS

Algebraic Properties of OLS Statistics

(1) The sum and thus the sample average of the OLS residuals is zero.

and thus  

(2) The sample covariance between the regressors and the OLS 
residuals is zero.

(3) The OLS regression line always goes through the mean of the 
sample.
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2.3 Mechanics of OLS

� We can think of each observation i as being made up of an 
explained part and an unexplained part                  . 

� We define the following:

is the total sum of squares (SST),

is the explained sum of squares (SSE),

is the residual sum of squares (SSR).

� Then SST = SSE + SSR                                               (2.36)
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2.3 Mechanics of OLS

� Proof:

and we know that 
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2.3 Mechanics of OLS

Goodness-of-Fit

� How well the OLS regression line fits the data?

� Divide (2.36) by SST to get:

1 = SSE/SST + SSR/SST

� The R-squared of the regression or the coefficient of 
determination

(2.38)

It implies the fraction of the sample variation in y that is explained 
by the model.

0             1
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2.3 Mechanics of OLS

� E.g., CEOSAL1. roe explains only about 1.3% of the variation in 
salaries for this sample. 

� � 98.7% of the salary variations for these CEOs is left unexplained!

� Notice that a seemingly low R2 does not mean that an OLS 
regression equation is useless. 

� It is still possible that (2.26) is a good estimate of the ceteris paribus 
relationship between salary and roe.

22
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2.4 Units of Measurement

� OLS estimates change when the units of measurement of the 
dependent and independent variables change.

� E.g., CEOSAL1. Rather than measuring salary in $’000, we 
measure it in $, salardol = 1,000.salary.

Without regression, we know that 

salârdol = 963,191 + 18,501roe.                    (2.40)

� Multiply the intercept and the slope in (2.26) by 1,000 � (2.26) and 
(2.40) have the same interpretations.

� Define roedec = roe/100 where roedec is a decimal.

salâry = 963.191 + 1850.1roedec.                  (2.41)

23
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2.4 Units of Measurement

� What happens to R2 when units of measurement change?

Nothing.
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2.4 Nonlinearities in Simple Regression

� It is rather easy to incorporate many nonlinearities into simple 
regression analysis by appropriately defining y and x.

� E.g., WAGE1.      of 0.54 means that each additional year of 
education increases wage by 54 cents. � maybe not reasonable.

� Suppose that the percentage increase in wage is the same given 
one more year of education.

(2.27) does not imply a constant percentage increase.

� New model: log(wage) =             educ + u (2.42)

where log(.) denotes the natural logarithm.
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2.4 Nonlinearities in Simple Regression

� For each additional year of education, the percentage change in 
wage is the same. � the change in wage increases. 

� (2.42) implies an increasing return to education.

� Estimating this model and the mechanics of OLS are the same:

� lôg(wage) = 0.584 + 0.083educ (2.44)

� wage increases by 8.3 percent for every additional year of educ.
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2.4 Nonlinearities in Simple Regression

� Another important use of the natural log is in obtaining a constant 
elasticity model.

� E.g., CEOSAL1. We can estimate a constant elasticity model 
relating CEO salary ($’000) to firm sales ($ mil):

log(salary) =             log(sales) + u (2.45)

where     is the elasticity of salary with respect to sales.

� If we change the units of measurement of y, what happens to     ?

Nothing.
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2.4 Meaning of Linear Regression

� We have seen a model that allows for nonlinear relationships. So 
what does “linear” mean?

� An equation y =            x + u is linear in parameters,      and     .

There are no restrictions on how y and x relate to the original 
dependent and independent variables. 

� Plenty of models cannot be cast as linear regression models 
because they are not linear in their parameters.

E.g., cons = 1/(            inc) + u

28
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2.5 Unbiasedness of OLS

Unbiasedness of OLS is established under a set of assumptions:

� Assumption SLR.1 (Linear in Parameters)

The population model is linear in parameters as

(2.47)

where      and     are the population intercept and slope parameters.

� Realistically, y, x, u are all viewed as random variables.

� Assumption SLR.2 (Random Sampling)

We can use a random sample of size n, {(xi,yi): i = 1, 2, …, n}, from 
the population model.
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2.5 Unbiasedness of OLS

� Not all cross-sectional samples can be viewed as random samples, 
but many may be.

� We can write (2.47) in terms of the random sample as

,    i = 1, 2, …, n                (2.48)

� To obtain unbiased estimators of      and     , we need to impose

� Assumption SLR.3 (Zero Conditional Mean)

E(u|x) = 0

This assumption implies E(ui|xi) = 0 for all i = 1, 2, …, n.
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2.5 Unbiasedness of OLS

� Assumption SLR.4 (Sample Variation in the Independent Variable)

In the sample, xi, i = 1, 2, …, n are not all equal to a constant.

This assumption is equivalent to 

� From (2.19) : 

� Plug (2.48) into this:
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2.5 Unbiasedness of OLS

� Errors ui’s are generally different from 0. � differs from     .

� The first important statistical property of OLS:

Theorem 2.1 (Unbiasedness of OLS)

Using Assumptions SLR.1 through SLR.4, 

, and                                          (2.53)

The OLS estimates of      and     are unbiased.

� Proof:
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2.5 Unbiasedness of OLS

� (2.17) implies

� Remember unbiasedness is a feature of the sampling distributions 
of      and     .It says nothing about the estimate we obtain for a 
given sample.

� If any of four assumptions fails, then OLS is not necessarily 
unbiased. 

� When u contains factors affecting y that are also correlated with x 
can result in spurious correlation.
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2.5 Unbiasedness of OLS

� E.g., let math10 denote % of tenth graders at a high school 
receiving a passing score on a standardized math exam.

Let lnchprg denote % of students eligible for the federally funded 
school lunch program.

� We expect the lunch program has a positive effect on performance:

� MEAP93 has data on 408 Michigan high school for the 1992-1993 
school year. 

mâth10 = 32.14 – 0.319lnchprg

� Why? u contains such as the poverty rate of children attending 
school, which affects student performance and is highly correlated 
with eligibility in the lunch program.
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2.5 Variances of the OLS Estimators

� Now we know that the sampling distribution of our estimate is 
centered about the true parameter.

How spread out is this distribution? � the variance.

� We need to add an assumption.

Assumption SLR.5 (Homoskedasticity)

Var(u|x) = 

� This assumption is distinct from Assumption SLR.3: E(u|x) = 0.

� This assumption simplifies the variance calculations for      and      
and it implies OLS has certain efficiency properties.
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2.5 Variances of the OLS Estimators

� Var(u|x) = E(u2|x) – [E(u|x)]2 = E(u2|x) =       � Var(u) = E(u2) = 

� is often called the error variance.

� , the square root of the error variance, is called the standard 
deviation of the error.

� We can say that 

(2.55)

(2.56)
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2.5 Variances of the OLS Estimators

� Homoskedastic case:

37
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2.5 Variances of the OLS Estimators

� Heteroskedastic case:
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2.5 Variances of the OLS Estimators

� Theorem 2.2 (Sampling variances of the OLS estimators)

Under Assumptions SLR.1 through SLR.5, 

(2.57)

and                                                                                            (2.58)

� Proof: 
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2.5 Variances of the OLS Estimators

� (2.57) and (2.58) are invalid in the presence of heteroskedasticity.

� (2.57) and (2.58) imply that:

(i) The larger the error variance, the larger are Var(     ) .

(ii) The larger the variability in the xi, the smaller are Var(     ).

� Problem: the error variance       is unknown because we don’t 
observe the errors, ui.
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jβ̂

jβ̂

2σ

2.5 Estimating the Error Variance

� What we observe are the residuals,     . We can use the residuals to 
form an estimate of the error variance.

� We write the residuals as a function of the errors:

(2.59)

� An unbiased estimator of       is

(2.61)
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2.5 Estimating the Error Variance

� = standard error of the regression (SER). 

� Recall that                           , if we substitute       for      , then we 

have the standard error of     :
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2.6 Regression through the Origin

� In rare cases, we impose the restriction that when x = 0, E(y|0) = 0.

E.g., if income (x) is zero, income tax revenues (y) must also be 
zero.

� Equation                                                                                   (2.63)

Obtaining (2.63) is called regression through the origin.

� We still use OLS method with the corresponding first order condition

� (2.66)

If           , then      is a biased estimator of     .
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